(x-3)(14000/x+1500)=14000

Simple and best practice solution for (x-3)(14000/x+1500)=14000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-3)(14000/x+1500)=14000 equation:



(x-3)(14000/x+1500)=14000
We move all terms to the left:
(x-3)(14000/x+1500)-(14000)=0
Domain of the equation: x+1500)!=0
x∈R
We multiply parentheses ..
(+14000x^2+1500x-42000x-4500)-14000=0
We get rid of parentheses
14000x^2+1500x-42000x-4500-14000=0
We add all the numbers together, and all the variables
14000x^2-40500x-18500=0
a = 14000; b = -40500; c = -18500;
Δ = b2-4ac
Δ = -405002-4·14000·(-18500)
Δ = 2676250000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2676250000}=\sqrt{250000*10705}=\sqrt{250000}*\sqrt{10705}=500\sqrt{10705}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40500)-500\sqrt{10705}}{2*14000}=\frac{40500-500\sqrt{10705}}{28000} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40500)+500\sqrt{10705}}{2*14000}=\frac{40500+500\sqrt{10705}}{28000} $

See similar equations:

| x*0,25=200 | | 2m-7(m+6)=-82 | | 4x+3=2x=111 | | x+5=(-4)-2x | | 2|2x-3|=14 | | 6*x=50 | | -6(1+6r)-r=-191 | | 7*x=59 | | x-131=55 | | 4⋅x=50 | | 112(x−18)=4+x | | 8a−8=6+a | | -170=5(6n+8) | | 2x=40−6x | | 4x=+3=-25 | | r-2+5=9 | | X^3+6x^2+11x+8=0 | | 7a+2+4=-15 | | 8x−18=6 | | z/9+8=5 | | 100r^2=9 | | 3x−8=1 | | 21=3x+3+6 | | 5x-2(2x-11)=27 | | -15=x-46 | | 4x+5+3x=133 | | -18=1+8x-3 | | 3(x-3)-2(1-x)-(x+3)=0 | | (x3-1/x3)=14 | | 18x^2x62-6x=0 | | 2-2x-3x=-13 | | 2(2x+5)=3(3x+5) |

Equations solver categories