(x-22)+(2x-54)+(1/2x+11)=180

Simple and best practice solution for (x-22)+(2x-54)+(1/2x+11)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-22)+(2x-54)+(1/2x+11)=180 equation:



(x-22)+(2x-54)+(1/2x+11)=180
We move all terms to the left:
(x-22)+(2x-54)+(1/2x+11)-(180)=0
Domain of the equation: 2x+11)!=0
x∈R
We get rid of parentheses
x+2x+1/2x-22-54+11-180=0
We multiply all the terms by the denominator
x*2x+2x*2x-22*2x-54*2x+11*2x-180*2x+1=0
Wy multiply elements
2x^2+4x^2-44x-108x+22x-360x+1=0
We add all the numbers together, and all the variables
6x^2-490x+1=0
a = 6; b = -490; c = +1;
Δ = b2-4ac
Δ = -4902-4·6·1
Δ = 240076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{240076}=\sqrt{4*60019}=\sqrt{4}*\sqrt{60019}=2\sqrt{60019}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-490)-2\sqrt{60019}}{2*6}=\frac{490-2\sqrt{60019}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-490)+2\sqrt{60019}}{2*6}=\frac{490+2\sqrt{60019}}{12} $

See similar equations:

| -2(x+8)=28 | | 3/4p-4=23 | | 5.3t=-15.9 | | (x-22)+(2x-54)+(.5+11)=180 | | 117.77d+335.4d^2-39.846=0 | | x+5x+4x-3=180 | | 1/5(a+10)=-1 | | (3x+55)=(8x+5) | | (x+4)+(4x-29)=180 | | 64=(4^5x)*16^x^2 | | 11/6y-13=-2 | | -3x^2+15x^2-48=0 | | -2x^2+30x-48=0 | | 3x+4=2×+6 | | 2x-5=8x+7-5x | | 139.37d+335.4d^2-34.93=0 | | 3x(x-6)-8x=-2+5(2x+1) | | 2x+5=2x+100 | | X^4-x^2-114=0 | | 12x+3=103 | | 10x=39.5 | | 10x-10=39.5-10 | | 9x=10+5+6x | | 2^(2x-1)=16 | | 2x-2=10-3- | | 3a+35=2a | | 10^-x=0.0347 | | 7+3y=60 | | 3-(z-8)=22 | | 4x+13x-6+0.75=7x+36-1.75 | | x(x-20)=180x= | | 4/k=k/16 |

Equations solver categories