If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-20)+(x-10)+40+(1/3x)=360
We move all terms to the left:
(x-20)+(x-10)+40+(1/3x)-(360)=0
Domain of the equation: 3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(x-20)+(x-10)+(+1/3x)+40-360=0
We add all the numbers together, and all the variables
(x-20)+(x-10)+(+1/3x)-320=0
We get rid of parentheses
x+x+1/3x-20-10-320=0
We multiply all the terms by the denominator
x*3x+x*3x-20*3x-10*3x-320*3x+1=0
Wy multiply elements
3x^2+3x^2-60x-30x-960x+1=0
We add all the numbers together, and all the variables
6x^2-1050x+1=0
a = 6; b = -1050; c = +1;
Δ = b2-4ac
Δ = -10502-4·6·1
Δ = 1102476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1102476}=\sqrt{4*275619}=\sqrt{4}*\sqrt{275619}=2\sqrt{275619}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1050)-2\sqrt{275619}}{2*6}=\frac{1050-2\sqrt{275619}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1050)+2\sqrt{275619}}{2*6}=\frac{1050+2\sqrt{275619}}{12} $
| 18x=2,000 | | 19/4=n/6 | | (15x+7)+(13x-28)(10x-37)=180 | | -5(10x-5)=-125 | | -(n-6)+-8=-7 | | -16=5x+3(x-7) | | -5+2/3b=-17 | | 13=15-r | | c/5=-7.2 | | 5u−4u=2 | | 6x-1=24-2x | | 10p−4p=18 | | 11=n-10 | | 5x+7=-14-4 | | 105=3.5x | | 11=1n-10 | | 9x−6x=3(15−2x) | | 13t+7=46 | | -2(-2x-6)=8 | | -6.4b-18=-8(-3+2.9b) | | 20=y+16* | | 4x(1-x)+2x=-3(x+1) | | -9s+-3=-17 | | -3=z-9 | | 8x+12x-8=5(4x+9) | | 20−x11=1 | | (r-4)/8=34 | | 11=n-10n= | | 10-3=5x-18 | | 2.67=d-1.13/2 | | 10=6n-8 | | w8-2.1=-14.9 |