(x-2/x-1)-(x+4/2x+2)=0

Simple and best practice solution for (x-2/x-1)-(x+4/2x+2)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-2/x-1)-(x+4/2x+2)=0 equation:



(x-2/x-1)-(x+4/2x+2)=0
Domain of the equation: x-1)!=0
x∈R
Domain of the equation: 2x+2)!=0
x∈R
We get rid of parentheses
x-2/x-x-4/2x-1-2=0
We calculate fractions
x-x+(-4x)/2x^2+(-4x)/2x^2-1-2=0
We add all the numbers together, and all the variables
(-4x)/2x^2+(-4x)/2x^2-3=0
We multiply all the terms by the denominator
(-4x)+(-4x)-3*2x^2=0
Wy multiply elements
-6x^2+(-4x)+(-4x)=0
We get rid of parentheses
-6x^2-4x-4x=0
We add all the numbers together, and all the variables
-6x^2-8x=0
a = -6; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·(-6)·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*-6}=\frac{0}{-12} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*-6}=\frac{16}{-12} =-1+1/3 $

See similar equations:

| -26u=78 | | s+12.5=40 | | 10-k^2=10 | | Y=64-8x | | 5(x+12.25)=62.5 | | 5x-5=4x+1= | | 2k^2+9k-2=-6 | | 4=p/64 | | 1/2|4=x/28 | | 3(t+5)^2=24 | | 16a+2a+a-15a=12 | | -4(v+2)=3v-15 | | 5x-2=13 | | 1/24=x/28 | | 10x+4x-5x=18 | | A(5)=20+10x | | −6x+8=x+10−7x | | 2m-4=60 | | 11g-4g+g-8g+2g=10 | | 10−10c=5(–4c−8) | | 13=-45+2x | | a8/3=2/3 | | (x-2)^2-6=34 | | n-13÷12=3.5 | | 1812​ =15(3x+4)​ | | 12/x=8/3​ | | 12/x​ =8/3​ | | –3*(–5+–8)=n | | 4x+80=3x+86 | | 6=0.25(x-4) | | 11g−4g+g−8g+2g=10 | | 12x+6=-3(3x-16) |

Equations solver categories