(x-2)23-x(x+1)3=(x-3)(x+3)2-x22

Simple and best practice solution for (x-2)23-x(x+1)3=(x-3)(x+3)2-x22 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-2)23-x(x+1)3=(x-3)(x+3)2-x22 equation:



(x-2)23-x(x+1)3=(x-3)(x+3)2-x22
We move all terms to the left:
(x-2)23-x(x+1)3-((x-3)(x+3)2-x22)=0
We use the square of the difference formula
x^2+(x-2)23-x(x+1)3+9=0
We multiply parentheses
x^2-3x^2+23x-3x-46+9=0
We add all the numbers together, and all the variables
-2x^2+20x-37=0
a = -2; b = 20; c = -37;
Δ = b2-4ac
Δ = 202-4·(-2)·(-37)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{26}}{2*-2}=\frac{-20-2\sqrt{26}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{26}}{2*-2}=\frac{-20+2\sqrt{26}}{-4} $

See similar equations:

| −4=k−5 | | .m3=1.5 | | 8y+3=2y+36 | | (5x)^3=125 | | 64=4/x | | 6+6e=4e+20 | | 3÷x+1=6÷5x-1 | | 7x-8-7x=-2-x-2 | | 4z/9+9=-5 | | 3p-8=-5 | | 5+18=11x | | 12+6x=45-x | | s*6+32=182 | | 7y-6=9+2y1 | | (x-887)+393=-500 | | 2x-1/3+1=x | | -3(4+2x)=9(5-x) | | 2x+5(x-1)=3x | | (2x-17)^2=11 | | 3-(x-4)=2 | | X+5=3x-1x | | 5x+13=-48-10x | | 4x+60=4(x+15) | | t-19=-7 | | Y=36-x | | 5y+3=2y-20 | | 3-2(x-2)=-5 | | 368-(x+15)=417 | | 0.09=0.2x+x² | | 2(x-1)+5=x | | 3-2(3x+2)=4 | | -43x+2=11 |

Equations solver categories