(x-2)+x(x-3)=3(x+4)(x-3)-(x+2)(x-1)+2

Simple and best practice solution for (x-2)+x(x-3)=3(x+4)(x-3)-(x+2)(x-1)+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-2)+x(x-3)=3(x+4)(x-3)-(x+2)(x-1)+2 equation:


Simplifying
(x + -2) + x(x + -3) = 3(x + 4)(x + -3) + -1(x + 2)(x + -1) + 2

Reorder the terms:
(-2 + x) + x(x + -3) = 3(x + 4)(x + -3) + -1(x + 2)(x + -1) + 2

Remove parenthesis around (-2 + x)
-2 + x + x(x + -3) = 3(x + 4)(x + -3) + -1(x + 2)(x + -1) + 2

Reorder the terms:
-2 + x + x(-3 + x) = 3(x + 4)(x + -3) + -1(x + 2)(x + -1) + 2
-2 + x + (-3 * x + x * x) = 3(x + 4)(x + -3) + -1(x + 2)(x + -1) + 2
-2 + x + (-3x + x2) = 3(x + 4)(x + -3) + -1(x + 2)(x + -1) + 2

Combine like terms: x + -3x = -2x
-2 + -2x + x2 = 3(x + 4)(x + -3) + -1(x + 2)(x + -1) + 2

Reorder the terms:
-2 + -2x + x2 = 3(4 + x)(x + -3) + -1(x + 2)(x + -1) + 2

Reorder the terms:
-2 + -2x + x2 = 3(4 + x)(-3 + x) + -1(x + 2)(x + -1) + 2

Multiply (4 + x) * (-3 + x)
-2 + -2x + x2 = 3(4(-3 + x) + x(-3 + x)) + -1(x + 2)(x + -1) + 2
-2 + -2x + x2 = 3((-3 * 4 + x * 4) + x(-3 + x)) + -1(x + 2)(x + -1) + 2
-2 + -2x + x2 = 3((-12 + 4x) + x(-3 + x)) + -1(x + 2)(x + -1) + 2
-2 + -2x + x2 = 3(-12 + 4x + (-3 * x + x * x)) + -1(x + 2)(x + -1) + 2
-2 + -2x + x2 = 3(-12 + 4x + (-3x + x2)) + -1(x + 2)(x + -1) + 2

Combine like terms: 4x + -3x = 1x
-2 + -2x + x2 = 3(-12 + 1x + x2) + -1(x + 2)(x + -1) + 2
-2 + -2x + x2 = (-12 * 3 + 1x * 3 + x2 * 3) + -1(x + 2)(x + -1) + 2
-2 + -2x + x2 = (-36 + 3x + 3x2) + -1(x + 2)(x + -1) + 2

Reorder the terms:
-2 + -2x + x2 = -36 + 3x + 3x2 + -1(2 + x)(x + -1) + 2

Reorder the terms:
-2 + -2x + x2 = -36 + 3x + 3x2 + -1(2 + x)(-1 + x) + 2

Multiply (2 + x) * (-1 + x)
-2 + -2x + x2 = -36 + 3x + 3x2 + -1(2(-1 + x) + x(-1 + x)) + 2
-2 + -2x + x2 = -36 + 3x + 3x2 + -1((-1 * 2 + x * 2) + x(-1 + x)) + 2
-2 + -2x + x2 = -36 + 3x + 3x2 + -1((-2 + 2x) + x(-1 + x)) + 2
-2 + -2x + x2 = -36 + 3x + 3x2 + -1(-2 + 2x + (-1 * x + x * x)) + 2
-2 + -2x + x2 = -36 + 3x + 3x2 + -1(-2 + 2x + (-1x + x2)) + 2

Combine like terms: 2x + -1x = 1x
-2 + -2x + x2 = -36 + 3x + 3x2 + -1(-2 + 1x + x2) + 2
-2 + -2x + x2 = -36 + 3x + 3x2 + (-2 * -1 + 1x * -1 + x2 * -1) + 2
-2 + -2x + x2 = -36 + 3x + 3x2 + (2 + -1x + -1x2) + 2

Reorder the terms:
-2 + -2x + x2 = -36 + 2 + 2 + 3x + -1x + 3x2 + -1x2

Combine like terms: -36 + 2 = -34
-2 + -2x + x2 = -34 + 2 + 3x + -1x + 3x2 + -1x2

Combine like terms: -34 + 2 = -32
-2 + -2x + x2 = -32 + 3x + -1x + 3x2 + -1x2

Combine like terms: 3x + -1x = 2x
-2 + -2x + x2 = -32 + 2x + 3x2 + -1x2

Combine like terms: 3x2 + -1x2 = 2x2
-2 + -2x + x2 = -32 + 2x + 2x2

Solving
-2 + -2x + x2 = -32 + 2x + 2x2

Solving for variable 'x'.

Reorder the terms:
-2 + 32 + -2x + -2x + x2 + -2x2 = -32 + 2x + 2x2 + 32 + -2x + -2x2

Combine like terms: -2 + 32 = 30
30 + -2x + -2x + x2 + -2x2 = -32 + 2x + 2x2 + 32 + -2x + -2x2

Combine like terms: -2x + -2x = -4x
30 + -4x + x2 + -2x2 = -32 + 2x + 2x2 + 32 + -2x + -2x2

Combine like terms: x2 + -2x2 = -1x2
30 + -4x + -1x2 = -32 + 2x + 2x2 + 32 + -2x + -2x2

Reorder the terms:
30 + -4x + -1x2 = -32 + 32 + 2x + -2x + 2x2 + -2x2

Combine like terms: -32 + 32 = 0
30 + -4x + -1x2 = 0 + 2x + -2x + 2x2 + -2x2
30 + -4x + -1x2 = 2x + -2x + 2x2 + -2x2

Combine like terms: 2x + -2x = 0
30 + -4x + -1x2 = 0 + 2x2 + -2x2
30 + -4x + -1x2 = 2x2 + -2x2

Combine like terms: 2x2 + -2x2 = 0
30 + -4x + -1x2 = 0

Begin completing the square.  Divide all terms by
-1 the coefficient of the squared term: 

Divide each side by '-1'.
-30 + 4x + x2 = 0

Move the constant term to the right:

Add '30' to each side of the equation.
-30 + 4x + 30 + x2 = 0 + 30

Reorder the terms:
-30 + 30 + 4x + x2 = 0 + 30

Combine like terms: -30 + 30 = 0
0 + 4x + x2 = 0 + 30
4x + x2 = 0 + 30

Combine like terms: 0 + 30 = 30
4x + x2 = 30

The x term is 4x.  Take half its coefficient (2).
Square it (4) and add it to both sides.

Add '4' to each side of the equation.
4x + 4 + x2 = 30 + 4

Reorder the terms:
4 + 4x + x2 = 30 + 4

Combine like terms: 30 + 4 = 34
4 + 4x + x2 = 34

Factor a perfect square on the left side:
(x + 2)(x + 2) = 34

Calculate the square root of the right side: 5.830951895

Break this problem into two subproblems by setting 
(x + 2) equal to 5.830951895 and -5.830951895.

Subproblem 1

x + 2 = 5.830951895 Simplifying x + 2 = 5.830951895 Reorder the terms: 2 + x = 5.830951895 Solving 2 + x = 5.830951895 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2' to each side of the equation. 2 + -2 + x = 5.830951895 + -2 Combine like terms: 2 + -2 = 0 0 + x = 5.830951895 + -2 x = 5.830951895 + -2 Combine like terms: 5.830951895 + -2 = 3.830951895 x = 3.830951895 Simplifying x = 3.830951895

Subproblem 2

x + 2 = -5.830951895 Simplifying x + 2 = -5.830951895 Reorder the terms: 2 + x = -5.830951895 Solving 2 + x = -5.830951895 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2' to each side of the equation. 2 + -2 + x = -5.830951895 + -2 Combine like terms: 2 + -2 = 0 0 + x = -5.830951895 + -2 x = -5.830951895 + -2 Combine like terms: -5.830951895 + -2 = -7.830951895 x = -7.830951895 Simplifying x = -7.830951895

Solution

The solution to the problem is based on the solutions from the subproblems. x = {3.830951895, -7.830951895}

See similar equations:

| 2/5x-17=21 | | 10x-12=7+7x | | (-3+4i)-(4-5i)= | | 6x+3=3x+42 | | 12+8x=4x+8 | | 40=-20logx | | 4(x+1)=7(x+2)+3 | | x^2+10x+24=8 | | 7n+8=11n | | 7(-2+5x)-10=81 | | 2v-11=23 | | 6(n-1)=9z-7 | | (6+5i)+(-3+2i)= | | 2(2-5x)=3(4x+1) | | x^3+4x^2+4x+16=0equation | | x^2+10x-299=0 | | .3y=2.10 | | 3(3x-6)=23 | | -9g+g+10+3+7g= | | m^2-20m+100m=0 | | 5(6x-3)=50 | | P(x)=2x^2-4x+2 | | 27=3x+b | | 25x+.20=36 | | (1/3)9* | | 7n^2-10n-5=-6n+6n^2 | | 4m+8+7m= | | 112.42=7.7n | | 8x^2+6=49x | | 7(3-z)=42 | | (2p+9)(2p-9)= | | 8p^2+-8p=0 |

Equations solver categories