If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-2)(x+2)=252
We move all terms to the left:
(x-2)(x+2)-(252)=0
We use the square of the difference formula
x^2-4-252=0
We add all the numbers together, and all the variables
x^2-256=0
a = 1; b = 0; c = -256;
Δ = b2-4ac
Δ = 02-4·1·(-256)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32}{2*1}=\frac{-32}{2} =-16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32}{2*1}=\frac{32}{2} =16 $
| 5m=-9+4m | | 6f+5=-7+4f | | g=4+2g | | 4/5+p=12 | | 6z-1=52-10 | | 10q+1=5+8q+8 | | 6+2t=3t | | 6y+1=8-6y | | 6z−1=5z−10 | | -7u-6=-6u | | 7h+8=-7+10h | | 6k=10=5k | | 2.3v=13.8. | | -3w+15w-11w=-8 | | 10d+7=9d | | -3t+10=-8t | | -4q+8=-5q-5q-4 | | t-17t=16 | | -2y+8=-y | | z-z+3z=12 | | 7(-)6q=-7q | | -2v-8=4v+10 | | -1-9h=-10h-3 | | 3z+3=2/3 | | 2a+4a+2a-2a=12 | | 25-r2=4r | | 4c=5c-7 | | t-10=10-t | | 7−6q=-7q | | -6t=-8-10t | | -10+10p=8p | | 20=5w-8/8+9w-8/4 |