If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-18)x=90
We move all terms to the left:
(x-18)x-(90)=0
We multiply parentheses
x^2-18x-90=0
a = 1; b = -18; c = -90;
Δ = b2-4ac
Δ = -182-4·1·(-90)
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{19}}{2*1}=\frac{18-6\sqrt{19}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{19}}{2*1}=\frac{18+6\sqrt{19}}{2} $
| 4(2x-7)+3x=5x-7 | | 8n+7=-7+6n | | 9m+2=38 | | 10w+7w=765 | | x+2x-18+4=100 | | 43-3x=16 | | -22=x=50 | | 3z*10+5=9 | | 43-3x=43 | | -6(4-3x)-7x=2(2-3x) | | X^2+2x+1X=22 | | y-(y*11.5/100)=8651.60 | | 4(x+2)=-3(2x-6) | | 6x+5)^2-10=−18x−15 | | (6x+5)2−10=−18x−15 | | (x+25)°+(9x+10)=180 | | 10+4.5^2x=88 | | 4.5^2x=78 | | 5–3x=–7 | | 24+2x=24 | | 3x+x=356 | | x-9=59 | | |3x+4|=20 | | 3x+x=548 | | y-(y*11.5/100)=3518.60 | | 3x^2-9=(-6) | | 5x^2-24x-19=(-14) | | -8x+13=-27.9x÷2 | | x/2+3x/2=12 | | 4x^2-9=(-8) | | 7x+15=3x-8 | | 37x=54 |