(x-10)+1/3x+(x-20)+4=360

Simple and best practice solution for (x-10)+1/3x+(x-20)+4=360 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-10)+1/3x+(x-20)+4=360 equation:



(x-10)+1/3x+(x-20)+4=360
We move all terms to the left:
(x-10)+1/3x+(x-20)+4-(360)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
(x-10)+1/3x+(x-20)-356=0
We get rid of parentheses
x+1/3x+x-10-20-356=0
We multiply all the terms by the denominator
x*3x+x*3x-10*3x-20*3x-356*3x+1=0
Wy multiply elements
3x^2+3x^2-30x-60x-1068x+1=0
We add all the numbers together, and all the variables
6x^2-1158x+1=0
a = 6; b = -1158; c = +1;
Δ = b2-4ac
Δ = -11582-4·6·1
Δ = 1340940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1340940}=\sqrt{4*335235}=\sqrt{4}*\sqrt{335235}=2\sqrt{335235}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1158)-2\sqrt{335235}}{2*6}=\frac{1158-2\sqrt{335235}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1158)+2\sqrt{335235}}{2*6}=\frac{1158+2\sqrt{335235}}{12} $

See similar equations:

| 5-(-2x-7)=75 | | 6x5+7x=34 | | 5m=-4m+36 | | 6x+9=78 | | 3(4y+3)=39 | | 9a=-2a+1 | | 5x+4x-7x=7+7 | | -12k=-14 | | 20+16j+20-2j=2(-4j-13) | | 7v=2v-30 | | 0.5x-1=0.25+2 | | 3x+15+2x=2(x+2) | | 9x-2x+100=180 | | 6r-8=2r+2 | | 8a=1+9a-8 | | –4y=–3y−4 | | 3+4x=8x-13 | | 20=(5x-13)+6x | | X/4+3x/5=-1 | | x+1/5(180-x)=72 | | 5n-2=3n-10 | | X-6x+15=33 | | 3.50x+2=3.25x+5,x | | -10=m+2 | | -12+4x-32=40 | | -5n+12=3n-8 | | 0.4n+0.1=1/2(n+4) | | 3-9d=12-6d | | –4n+13=1 | | 3y-10=-2(y-5) | | 3x-(4x+4)=32 | | 4n-4=8n-8 |

Equations solver categories