(x-1/6x)=575

Simple and best practice solution for (x-1/6x)=575 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-1/6x)=575 equation:



(x-1/6x)=575
We move all terms to the left:
(x-1/6x)-(575)=0
Domain of the equation: 6x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+x-1/6x)-575=0
We get rid of parentheses
x-1/6x-575=0
We multiply all the terms by the denominator
x*6x-575*6x-1=0
Wy multiply elements
6x^2-3450x-1=0
a = 6; b = -3450; c = -1;
Δ = b2-4ac
Δ = -34502-4·6·(-1)
Δ = 11902524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11902524}=\sqrt{4*2975631}=\sqrt{4}*\sqrt{2975631}=2\sqrt{2975631}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3450)-2\sqrt{2975631}}{2*6}=\frac{3450-2\sqrt{2975631}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3450)+2\sqrt{2975631}}{2*6}=\frac{3450+2\sqrt{2975631}}{12} $

See similar equations:

| 12t^2-11t+2=0 | | T^2+10t-40=0 | | 3(g+7)=36 | | 4/h-3=8 | | 4f+21=41 | | 4(3m-7)=9(m+3 | | X+x+x+x+48=180 | | X+x+x+48=180 | | X+x+x+72=180 | | 160+130+x=180 | | 30+95+x=180 | | -3a+12+7a=2a-4a | | x+6+2x=20 | | (8+x)/10=1 | | 3*4^x+6^x-2*9^x=0 | | (x^2/4)-1.5x+0.51=0 | | d/7=7/d=14 | | 6x+3-2x=16-3x | | 6x-3=2x+ | | x(2x+9)=90 | | 0.8x+32=0 | | 0=-(3)/(2)x+3 | | 5.2=2x.6 | | 3(n-9)=21 | | 2x/50=20/3x | | 71+x=66 | | 92=x+103 | | 2/x=5.9/8.1 | | 3s-2+90+4s-6=90 | | 7y+8=8y+7=90 | | 30x+2=92 | | 5v+36=9v |

Equations solver categories