If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x-1.4)(x-1.4)+(-2x+2.8)(-2x+2.8)=0.128164
We move all terms to the left:
(x-1.4)(x-1.4)+(-2x+2.8)(-2x+2.8)-(0.128164)=0
We add all the numbers together, and all the variables
(x-1.4)(x-1.4)+(-2x+2.8)(-2x+2.8)-0.128164=0
We multiply parentheses ..
(+x^2-1.4x-1.4x+1.96)+(-2x+2.8)(-2x+2.8)-0.128164=0
We get rid of parentheses
x^2-1.4x-1.4x+(-2x+2.8)(-2x+2.8)+1.96-0.128164=0
We multiply parentheses ..
x^2+(+4x^2-5.6x-5.6x+7.84)-1.4x-1.4x+1.96-0.128164=0
We add all the numbers together, and all the variables
x^2+(+4x^2-5.6x-5.6x+7.84)-2.8x+1.831836=0
We get rid of parentheses
x^2+4x^2-5.6x-5.6x-2.8x+7.84+1.831836=0
We add all the numbers together, and all the variables
5x^2-14x+9.671836=0
a = 5; b = -14; c = +9.671836;
Δ = b2-4ac
Δ = -142-4·5·9.671836
Δ = 2.56328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-\sqrt{2.56328}}{2*5}=\frac{14-\sqrt{2.56328}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+\sqrt{2.56328}}{2*5}=\frac{14+\sqrt{2.56328}}{10} $
| 3.4+r=7.33 | | 5x^2-2.8x+9.671836=0 | | 5x^2-19.5216x+9.671836=0 | | (3-x)*2=107 | | (x-1.4)^2+(-2x+3.35-0.55)^2=0.358^2 | | 80-2x=94x= | | 17p-10p=119 | | 15/x=1000 | | -3w+9=-42 | | 15t+10=-25 | | 33=6e-3 | | -5x-3=-7x+5 | | 7x+2=26-3x | | 156/x=6 | | k/3.5=8.6 | | k/3.5=8/6 | | 8x+10=142 | | 2=r/6+1 | | -3x+3=28+2x | | 2(23p-8)=14 | | 2(3x-5)+4x+7=37 | | 15p+300=600 | | 10a-50=130 | | 5f+27=47 | | 3r+8=23 | | 8q-28=68 | | 2w-7=-5w3 | | 5(2x-4)+50=40 | | 10(10x+4)=1440 | | 6+m=19= | | 8m-11=-53 | | (3+2y)-2y=3 |