(x-1)2+2(x-1)=x2-3(x+1)

Simple and best practice solution for (x-1)2+2(x-1)=x2-3(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-1)2+2(x-1)=x2-3(x+1) equation:



(x-1)2+2(x-1)=x2-3(x+1)
We move all terms to the left:
(x-1)2+2(x-1)-(x2-3(x+1))=0
We multiply parentheses
2x+2x-(x2-3(x+1))-2-2=0
We calculate terms in parentheses: -(x2-3(x+1)), so:
x2-3(x+1)
We add all the numbers together, and all the variables
x^2-3(x+1)
We multiply parentheses
x^2-3x-3
Back to the equation:
-(x^2-3x-3)
We add all the numbers together, and all the variables
4x-(x^2-3x-3)-4=0
We get rid of parentheses
-x^2+4x+3x+3-4=0
We add all the numbers together, and all the variables
-1x^2+7x-1=0
a = -1; b = 7; c = -1;
Δ = b2-4ac
Δ = 72-4·(-1)·(-1)
Δ = 45
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{45}=\sqrt{9*5}=\sqrt{9}*\sqrt{5}=3\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3\sqrt{5}}{2*-1}=\frac{-7-3\sqrt{5}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3\sqrt{5}}{2*-1}=\frac{-7+3\sqrt{5}}{-2} $

See similar equations:

| 9•3*4x=6561 | | 1+2y=3y-6 | | K=-10-9k | | x=83x | | 5-3b=2b-5 | | 2.8x=8.24 | | -6-2q=-10-4q | | 9x-4=x+5-3x | | 324x^2-24x-2=0 | | 5x–3=4 | | 324x^2-24x-6=0 | | 50-7x²=4x-25 | | 7-3u=10u | | 3(2x-4)-6x=-12 | | 8x-9=-7x+3 | | -7b-7=-6b | | 1/2x-1/3=1/x | | -8s=-8-10s | | 180=-20+2x | | 1,5a-2=2,5 | | 8p-15=2p+33 | | -2d=-d+7 | | 0.2x-1=2x+I8 | | x/3-(x-2)/2=7/3 | | x+9+3x=15 | | (5x+3)+(2x+2)=180 | | 6+3(5x-10)=-4(-3x+9) | | 8m+13=59 | | 8(1)h=12+4(1)h | | f=18*C+32 | | 0.x=-8 | | c^2+4c+-14=0 |

Equations solver categories