(x-1)/3x+(x+1)/2x=3

Simple and best practice solution for (x-1)/3x+(x+1)/2x=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-1)/3x+(x+1)/2x=3 equation:



(x-1)/3x+(x+1)/2x=3
We move all terms to the left:
(x-1)/3x+(x+1)/2x-(3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We calculate fractions
(2x^2-2x)/6x^2+(3x^2+3x)/6x^2-3=0
We multiply all the terms by the denominator
(2x^2-2x)+(3x^2+3x)-3*6x^2=0
Wy multiply elements
-18x^2+(2x^2-2x)+(3x^2+3x)=0
We get rid of parentheses
-18x^2+2x^2+3x^2-2x+3x=0
We add all the numbers together, and all the variables
-13x^2+x=0
a = -13; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-13)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-13}=\frac{-2}{-26} =1/13 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-13}=\frac{0}{-26} =0 $

See similar equations:

| 2x=x+49 | | 4-b=-1 | | -25/31=x+2/31 | | 9-5x-6-16x=6 | | -9x-13=-13+9x | | (2x)(2x)=358 | | 19v−19v+3v+4v−3v=4 | | x+1.6=7.2 | | 27=5x+6-2 | | −3(6x+4)+30x=12(x−1) | | 4k+k=-5 | | (7x+5)-4=8(x-8) | | 14=n-1-6n | | 328=8(5-6x)* | | 69/x=3 | | 10p+8=5p+3 | | 69/w=3 | | -6=m+4-4 | | 6x+4+6(x+1)=-2x+5 | | -9(3+8)=-9z-72 | | 7/8k=7 | | -4=2r-3r | | 3+8c=29 | | -7=3n+4n | | 5(z+6)=4(z-2)+z | | 3x-10=12+x | | 3x+3(2−x)=10−3(2+4x) | | 7p=7(8p+7) | | -9=4-2n-5 | | 123-5x=x+5536 | | -4(5−3x)=12x+20 | | 3+x/6=-1 |

Equations solver categories