(x-1)/(2-x)=2x=1

Simple and best practice solution for (x-1)/(2-x)=2x=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-1)/(2-x)=2x=1 equation:



(x-1)/(2-x)=2x=1
We move all terms to the left:
(x-1)/(2-x)-(2x)=0
Domain of the equation: (2-x)!=0
We move all terms containing x to the left, all other terms to the right
-x!=-2
x!=-2/-1
x!=+2
x∈R
We add all the numbers together, and all the variables
(x-1)/(-1x+2)-2x=0
We add all the numbers together, and all the variables
-2x+(x-1)/(-1x+2)=0
We multiply all the terms by the denominator
-2x*(-1x+2)+(x-1)=0
We multiply parentheses
2x^2-4x+(x-1)=0
We get rid of parentheses
2x^2-4x+x-1=0
We add all the numbers together, and all the variables
2x^2-3x-1=0
a = 2; b = -3; c = -1;
Δ = b2-4ac
Δ = -32-4·2·(-1)
Δ = 17
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{17}}{2*2}=\frac{3-\sqrt{17}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{17}}{2*2}=\frac{3+\sqrt{17}}{4} $

See similar equations:

| 12x2+30=0 | | 108=-4(5r-2) | | x-1/2-x=2x+1 | | -1/4w-5/3=7/5 | | -9x+6(-2x-2)=-28-5 | | 38+d-1=39 | | (2x1)+(x-10)=90 | | 5(3+h)-5=30 | | 9d10=210 | | x/6-x/12+5=x+15 | | B=5x-80 | | 3x+1+7x+1=15 | | 6-3f+8=-7-10f | | 9-30x=-42-26x | | -5v=6-3v | | 7/3x+45=6x+1 | | 18z=-54 | | 3x/4-5/6=7x/8-2 | | 9u-10=7u | | 3/4x+x=152 | | 18x+30=12x+20 | | w=3.3+(10.8*10) | | -0.25r=5.25 | | 7(1+5n)+3=-200 | | 9-4b=-9-2b | | 4(l-7)=5(-6+l) | | 10-2x=20-6x | | 3-(4x-1)=2 | | 3x-4-5/6=7x/8-2 | | w=3.3+(10.8*6) | | 5=9x+4/7x+6 | | -3x=2x-18 |

Equations solver categories