(x-1)(x+(1+i))(x+(1-i))=0

Simple and best practice solution for (x-1)(x+(1+i))(x+(1-i))=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-1)(x+(1+i))(x+(1-i))=0 equation:


Simplifying
(x + -1)(x + (1 + i))(x + (1 + -1i)) = 0

Reorder the terms:
(-1 + x)(x + (1 + i))(x + (1 + -1i)) = 0

Remove parenthesis around (1 + i)
(-1 + x)(x + 1 + i)(x + (1 + -1i)) = 0

Reorder the terms:
(-1 + x)(1 + i + x)(x + (1 + -1i)) = 0

Remove parenthesis around (1 + -1i)
(-1 + x)(1 + i + x)(x + 1 + -1i) = 0

Reorder the terms:
(-1 + x)(1 + i + x)(1 + -1i + x) = 0

Multiply (-1 + x) * (1 + i + x)
(-1(1 + i + x) + x(1 + i + x))(1 + -1i + x) = 0
((1 * -1 + i * -1 + x * -1) + x(1 + i + x))(1 + -1i + x) = 0
((-1 + -1i + -1x) + x(1 + i + x))(1 + -1i + x) = 0
(-1 + -1i + -1x + (1 * x + i * x + x * x))(1 + -1i + x) = 0

Reorder the terms:
(-1 + -1i + -1x + (ix + 1x + x2))(1 + -1i + x) = 0
(-1 + -1i + -1x + (ix + 1x + x2))(1 + -1i + x) = 0

Reorder the terms:
(-1 + -1i + ix + -1x + 1x + x2)(1 + -1i + x) = 0

Combine like terms: -1x + 1x = 0
(-1 + -1i + ix + 0 + x2)(1 + -1i + x) = 0
(-1 + -1i + ix + x2)(1 + -1i + x) = 0

Multiply (-1 + -1i + ix + x2) * (1 + -1i + x)
(-1(1 + -1i + x) + -1i * (1 + -1i + x) + ix(1 + -1i + x) + x2(1 + -1i + x)) = 0
((1 * -1 + -1i * -1 + x * -1) + -1i * (1 + -1i + x) + ix(1 + -1i + x) + x2(1 + -1i + x)) = 0
((-1 + 1i + -1x) + -1i * (1 + -1i + x) + ix(1 + -1i + x) + x2(1 + -1i + x)) = 0
(-1 + 1i + -1x + (1 * -1i + -1i * -1i + x * -1i) + ix(1 + -1i + x) + x2(1 + -1i + x)) = 0

Reorder the terms:
(-1 + 1i + -1x + (-1i + -1ix + 1i2) + ix(1 + -1i + x) + x2(1 + -1i + x)) = 0
(-1 + 1i + -1x + (-1i + -1ix + 1i2) + ix(1 + -1i + x) + x2(1 + -1i + x)) = 0
(-1 + 1i + -1x + -1i + -1ix + 1i2 + (1 * ix + -1i * ix + x * ix) + x2(1 + -1i + x)) = 0

Reorder the terms:
(-1 + 1i + -1x + -1i + -1ix + 1i2 + (1ix + ix2 + -1i2x) + x2(1 + -1i + x)) = 0
(-1 + 1i + -1x + -1i + -1ix + 1i2 + (1ix + ix2 + -1i2x) + x2(1 + -1i + x)) = 0
(-1 + 1i + -1x + -1i + -1ix + 1i2 + 1ix + ix2 + -1i2x + (1 * x2 + -1i * x2 + x * x2)) = 0

Reorder the terms:
(-1 + 1i + -1x + -1i + -1ix + 1i2 + 1ix + ix2 + -1i2x + (-1ix2 + 1x2 + x3)) = 0
(-1 + 1i + -1x + -1i + -1ix + 1i2 + 1ix + ix2 + -1i2x + (-1ix2 + 1x2 + x3)) = 0

Reorder the terms:
(-1 + 1i + -1i + -1ix + 1ix + ix2 + -1ix2 + 1i2 + -1i2x + -1x + 1x2 + x3) = 0

Combine like terms: 1i + -1i = 0
(-1 + 0 + -1ix + 1ix + ix2 + -1ix2 + 1i2 + -1i2x + -1x + 1x2 + x3) = 0
(-1 + -1ix + 1ix + ix2 + -1ix2 + 1i2 + -1i2x + -1x + 1x2 + x3) = 0

Combine like terms: -1ix + 1ix = 0
(-1 + 0 + ix2 + -1ix2 + 1i2 + -1i2x + -1x + 1x2 + x3) = 0
(-1 + ix2 + -1ix2 + 1i2 + -1i2x + -1x + 1x2 + x3) = 0

Combine like terms: ix2 + -1ix2 = 0
(-1 + 0 + 1i2 + -1i2x + -1x + 1x2 + x3) = 0
(-1 + 1i2 + -1i2x + -1x + 1x2 + x3) = 0

Solving
-1 + 1i2 + -1i2x + -1x + 1x2 + x3 = 0

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '1' to each side of the equation.
-1 + 1i2 + -1i2x + -1x + 1x2 + 1 + x3 = 0 + 1

Reorder the terms:
-1 + 1 + 1i2 + -1i2x + -1x + 1x2 + x3 = 0 + 1

Combine like terms: -1 + 1 = 0
0 + 1i2 + -1i2x + -1x + 1x2 + x3 = 0 + 1
1i2 + -1i2x + -1x + 1x2 + x3 = 0 + 1

Combine like terms: 0 + 1 = 1
1i2 + -1i2x + -1x + 1x2 + x3 = 1

Add 'x' to each side of the equation.
1i2 + -1i2x + -1x + 1x2 + x + x3 = 1 + x

Reorder the terms:
1i2 + -1i2x + -1x + x + 1x2 + x3 = 1 + x

Combine like terms: -1x + x = 0
1i2 + -1i2x + 0 + 1x2 + x3 = 1 + x
1i2 + -1i2x + 1x2 + x3 = 1 + x

Add '-1x2' to each side of the equation.
1i2 + -1i2x + 1x2 + -1x2 + x3 = 1 + x + -1x2

Combine like terms: 1x2 + -1x2 = 0
1i2 + -1i2x + 0 + x3 = 1 + x + -1x2
1i2 + -1i2x + x3 = 1 + x + -1x2

Add '-1x3' to each side of the equation.
1i2 + -1i2x + x3 + -1x3 = 1 + x + -1x2 + -1x3

Combine like terms: x3 + -1x3 = 0
1i2 + -1i2x + 0 = 1 + x + -1x2 + -1x3
1i2 + -1i2x = 1 + x + -1x2 + -1x3

Reorder the terms:
-1 + 1i2 + -1i2x + -1x + x2 + x3 = 1 + x + -1x2 + -1x3 + -1 + -1x + x2 + x3

Reorder the terms:
-1 + 1i2 + -1i2x + -1x + x2 + x3 = 1 + -1 + x + -1x + -1x2 + x2 + -1x3 + x3

Combine like terms: 1 + -1 = 0
-1 + 1i2 + -1i2x + -1x + x2 + x3 = 0 + x + -1x + -1x2 + x2 + -1x3 + x3
-1 + 1i2 + -1i2x + -1x + x2 + x3 = x + -1x + -1x2 + x2 + -1x3 + x3

Combine like terms: x + -1x = 0
-1 + 1i2 + -1i2x + -1x + x2 + x3 = 0 + -1x2 + x2 + -1x3 + x3
-1 + 1i2 + -1i2x + -1x + x2 + x3 = -1x2 + x2 + -1x3 + x3

Combine like terms: -1x2 + x2 = 0
-1 + 1i2 + -1i2x + -1x + x2 + x3 = 0 + -1x3 + x3
-1 + 1i2 + -1i2x + -1x + x2 + x3 = -1x3 + x3

Combine like terms: -1x3 + x3 = 0
-1 + 1i2 + -1i2x + -1x + x2 + x3 = 0

The solution to this equation could not be determined.

See similar equations:

| 5(2x+7)-4x=3x+50 | | -4(r+-6)=-63 | | 1/4x-5=35 | | 8/g=3 | | 3y+10=-4y+10 | | y+1.4y-1.8=3.5(y+6.4) | | y-(10-c)=c | | 5+3n=41 | | r-45=109 | | 8x^2-136x+560=0 | | 9x^9/2-18=0 | | 4(x-3)+5x=2(x-6)+7x | | 62=.5h(3+5) | | 2x-44=16 | | -7(3+x)=4(2x+6) | | 12x-6+4(3x)=90 | | 5(x-5)+18=138 | | -7n+10=2n | | -5(-5a+6)+6=76 | | -5.2u-4.5=-6.1u-6.3 | | (X-8)/6=7 | | f(x)=2x^3+6x^2-18x-5 | | 5(2x+10)=60 | | -6x+15=2x-1 | | 99=100-y | | 4.7-w=1.2 | | 2+6x=4x-10 | | 5x-10=-7x | | 1.8g=-9.2 | | 15+5(3+4)= | | -19x-12=-145 | | -8(m+2)=-(6+6m) |

Equations solver categories