If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (x + y + -1z)(x + y + z) = 0 Multiply (x + y + -1z) * (x + y + z) (x(x + y + z) + y(x + y + z) + -1z * (x + y + z)) = 0 ((x * x + y * x + z * x) + y(x + y + z) + -1z * (x + y + z)) = 0 Reorder the terms: ((xy + xz + x2) + y(x + y + z) + -1z * (x + y + z)) = 0 ((xy + xz + x2) + y(x + y + z) + -1z * (x + y + z)) = 0 (xy + xz + x2 + (x * y + y * y + z * y) + -1z * (x + y + z)) = 0 Reorder the terms: (xy + xz + x2 + (xy + yz + y2) + -1z * (x + y + z)) = 0 (xy + xz + x2 + (xy + yz + y2) + -1z * (x + y + z)) = 0 (xy + xz + x2 + xy + yz + y2 + (x * -1z + y * -1z + z * -1z)) = 0 (xy + xz + x2 + xy + yz + y2 + (-1xz + -1yz + -1z2)) = 0 Reorder the terms: (xy + xy + xz + -1xz + x2 + yz + -1yz + y2 + -1z2) = 0 Combine like terms: xy + xy = 2xy (2xy + xz + -1xz + x2 + yz + -1yz + y2 + -1z2) = 0 Combine like terms: xz + -1xz = 0 (2xy + 0 + x2 + yz + -1yz + y2 + -1z2) = 0 (2xy + x2 + yz + -1yz + y2 + -1z2) = 0 Combine like terms: yz + -1yz = 0 (2xy + x2 + 0 + y2 + -1z2) = 0 (2xy + x2 + y2 + -1z2) = 0 Solving 2xy + x2 + y2 + -1z2 = 0 Solving for variable 'x'. The solution to this equation could not be determined.
| B+7tx=3y | | -2x+4-x=17 | | 5-6x^2=-433 | | 4m-3n=7(2) | | 6v^2-3=21 | | 4p-6-6p+12=0 | | 13x+8=65+1x | | 6-2x=x-10x+6 | | 6p+11y= | | f(x)=4x^2-20x+6 | | 0=59-0.3x^2-2x+12 | | 4(24-3x+36-12x)18=5x | | 4m+3=2m+13 | | 6(x+2)+x=180 | | 3x+6-3y=0 | | 4x+8-6-15x=5(3x-2) | | 8x^2+2=130 | | 4+9B=31 | | 4x^3+2x^2+x=10 | | 20=7x-6 | | -1/7x-1/8 | | 3x/2-10=2 | | x-3/16=9/2 | | 3x-3=10x+4 | | 9=4j+4 | | 2-7y+5=-9 | | f(x)=x^2+3-18 | | Z+7=2z-5 | | 3G+4/4=4g-8/5 | | 2x^2-2=7 | | -x^2+56x+78=0 | | 36=8p+4 |