(x+iy-1+3i)(x-iy+1-3i)=0

Simple and best practice solution for (x+iy-1+3i)(x-iy+1-3i)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+iy-1+3i)(x-iy+1-3i)=0 equation:


Simplifying
(x + iy + -1 + 3i)(x + -1iy + 1 + -3i) = 0

Reorder the terms:
(-1 + 3i + iy + x)(x + -1iy + 1 + -3i) = 0

Reorder the terms:
(-1 + 3i + iy + x)(1 + -3i + -1iy + x) = 0

Multiply (-1 + 3i + iy + x) * (1 + -3i + -1iy + x)
(-1(1 + -3i + -1iy + x) + 3i * (1 + -3i + -1iy + x) + iy(1 + -3i + -1iy + x) + x(1 + -3i + -1iy + x)) = 0
((1 * -1 + -3i * -1 + -1iy * -1 + x * -1) + 3i * (1 + -3i + -1iy + x) + iy(1 + -3i + -1iy + x) + x(1 + -3i + -1iy + x)) = 0
((-1 + 3i + 1iy + -1x) + 3i * (1 + -3i + -1iy + x) + iy(1 + -3i + -1iy + x) + x(1 + -3i + -1iy + x)) = 0
(-1 + 3i + 1iy + -1x + (1 * 3i + -3i * 3i + -1iy * 3i + x * 3i) + iy(1 + -3i + -1iy + x) + x(1 + -3i + -1iy + x)) = 0

Reorder the terms:
(-1 + 3i + 1iy + -1x + (3i + 3ix + -9i2 + -3i2y) + iy(1 + -3i + -1iy + x) + x(1 + -3i + -1iy + x)) = 0
(-1 + 3i + 1iy + -1x + (3i + 3ix + -9i2 + -3i2y) + iy(1 + -3i + -1iy + x) + x(1 + -3i + -1iy + x)) = 0
(-1 + 3i + 1iy + -1x + 3i + 3ix + -9i2 + -3i2y + (1 * iy + -3i * iy + -1iy * iy + x * iy) + x(1 + -3i + -1iy + x)) = 0

Reorder the terms:
(-1 + 3i + 1iy + -1x + 3i + 3ix + -9i2 + -3i2y + (ixy + 1iy + -3i2y + -1i2y2) + x(1 + -3i + -1iy + x)) = 0
(-1 + 3i + 1iy + -1x + 3i + 3ix + -9i2 + -3i2y + (ixy + 1iy + -3i2y + -1i2y2) + x(1 + -3i + -1iy + x)) = 0
(-1 + 3i + 1iy + -1x + 3i + 3ix + -9i2 + -3i2y + ixy + 1iy + -3i2y + -1i2y2 + (1 * x + -3i * x + -1iy * x + x * x)) = 0

Reorder the terms:
(-1 + 3i + 1iy + -1x + 3i + 3ix + -9i2 + -3i2y + ixy + 1iy + -3i2y + -1i2y2 + (-3ix + -1ixy + 1x + x2)) = 0
(-1 + 3i + 1iy + -1x + 3i + 3ix + -9i2 + -3i2y + ixy + 1iy + -3i2y + -1i2y2 + (-3ix + -1ixy + 1x + x2)) = 0

Reorder the terms:
(-1 + 3i + 3i + 3ix + -3ix + ixy + -1ixy + 1iy + 1iy + -9i2 + -3i2y + -3i2y + -1i2y2 + -1x + 1x + x2) = 0

Combine like terms: 3i + 3i = 6i
(-1 + 6i + 3ix + -3ix + ixy + -1ixy + 1iy + 1iy + -9i2 + -3i2y + -3i2y + -1i2y2 + -1x + 1x + x2) = 0

Combine like terms: 3ix + -3ix = 0
(-1 + 6i + 0 + ixy + -1ixy + 1iy + 1iy + -9i2 + -3i2y + -3i2y + -1i2y2 + -1x + 1x + x2) = 0
(-1 + 6i + ixy + -1ixy + 1iy + 1iy + -9i2 + -3i2y + -3i2y + -1i2y2 + -1x + 1x + x2) = 0

Combine like terms: ixy + -1ixy = 0
(-1 + 6i + 0 + 1iy + 1iy + -9i2 + -3i2y + -3i2y + -1i2y2 + -1x + 1x + x2) = 0
(-1 + 6i + 1iy + 1iy + -9i2 + -3i2y + -3i2y + -1i2y2 + -1x + 1x + x2) = 0

Combine like terms: 1iy + 1iy = 2iy
(-1 + 6i + 2iy + -9i2 + -3i2y + -3i2y + -1i2y2 + -1x + 1x + x2) = 0

Combine like terms: -3i2y + -3i2y = -6i2y
(-1 + 6i + 2iy + -9i2 + -6i2y + -1i2y2 + -1x + 1x + x2) = 0

Combine like terms: -1x + 1x = 0
(-1 + 6i + 2iy + -9i2 + -6i2y + -1i2y2 + 0 + x2) = 0
(-1 + 6i + 2iy + -9i2 + -6i2y + -1i2y2 + x2) = 0

Solving
-1 + 6i + 2iy + -9i2 + -6i2y + -1i2y2 + x2 = 0

Solving for variable 'i'.

The solution to this equation could not be determined.

See similar equations:

| (u-9)*7=21 | | -7(y+1)=y-3+2(3y+7) | | 8n=3n-6 | | 4cos^2x+5sinx=5 | | (x-8)*2=8 | | x+26=2x-42 | | 5n-7=11-n | | 12(-0.125)=4(-0.125)-1 | | x(x+3)+21=0 | | 6(5n+9)= | | 4(x-4)=2x-19 | | 105/30x=(-4/30) | | 11-7/6=-22 | | 24-8x=x^2 | | -2x^4+14x^3-28x^2=0 | | (2z-1)=(z+2) | | 18237.12=3039.52+138.16h | | Y=(k-2x+4k-8) | | -11x+15x-63=93 | | (5m-9)=(m+11) | | 5y+1.2=48 | | 4(x+1)=2x-19 | | 11-2*x=6 | | 18-5(w+3)=-2(5w+1)+15 | | y/-2-2= | | 4x+3+4x+3+4x+3= | | 550.4288=6.28r^2+101.108r | | x+(x+1)=(x+2)+(x+3)+(x+4) | | X-(-5)=-10 | | 8x+2y=540 | | (x*3)+209=(x*13)-11 | | 8(3x-1)=64 |

Equations solver categories