(x+8)x=(2x+1)(2x+1)

Simple and best practice solution for (x+8)x=(2x+1)(2x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+8)x=(2x+1)(2x+1) equation:



(x+8)x=(2x+1)(2x+1)
We move all terms to the left:
(x+8)x-((2x+1)(2x+1))=0
We multiply parentheses
x^2+8x-((2x+1)(2x+1))=0
We multiply parentheses ..
x^2-((+4x^2+2x+2x+1))+8x=0
We calculate terms in parentheses: -((+4x^2+2x+2x+1)), so:
(+4x^2+2x+2x+1)
We get rid of parentheses
4x^2+2x+2x+1
We add all the numbers together, and all the variables
4x^2+4x+1
Back to the equation:
-(4x^2+4x+1)
We add all the numbers together, and all the variables
x^2+8x-(4x^2+4x+1)=0
We get rid of parentheses
x^2-4x^2+8x-4x-1=0
We add all the numbers together, and all the variables
-3x^2+4x-1=0
a = -3; b = 4; c = -1;
Δ = b2-4ac
Δ = 42-4·(-3)·(-1)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{4}=2$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2}{2*-3}=\frac{-6}{-6} =1 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2}{2*-3}=\frac{-2}{-6} =1/3 $

See similar equations:

| 8-5/7-x=-32 | | n/4+5=10 | | u−55–3=–8 | | 1/5+x/4+2=5 | | 14(x+20)=80 | | 3x^2=(0.1-x)^2 | | 3x+4=10x–17 | | 13x-2(3x=6) | | 2x+26=2(2x+32) | | 2x-3+4x=72 | | 2x+26=2(2x+32( | | 450+0.125s=20 | | 2(3w+5)/5=3 | | 7(c-92)=-28 | | 5x+10+4x+8+90=180 | | 43​ x=21 | | 2(3w+5)÷5=3 | | 2n-1/2=-71 | | 13x-2(3x=6)= | | 450+0.125s=2000 | | 2y+19=5y-23 | | 3(6n-5-8=97 | | -4=h/3-5 | | x=-44 | | 5x/11-11=0 | | -48+18=-7(6x-6) | | 3x+20+100=180 | | 2(10x-7)=-10 | | 5x-11/11=0 | | x+x+4+10=38 | | 3s+-7=2 | | 5x+25+137-2x=90 |

Equations solver categories