If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+76)(40+x)=9120
We move all terms to the left:
(x+76)(40+x)-(9120)=0
We add all the numbers together, and all the variables
(x+76)(x+40)-9120=0
We multiply parentheses ..
(+x^2+40x+76x+3040)-9120=0
We get rid of parentheses
x^2+40x+76x+3040-9120=0
We add all the numbers together, and all the variables
x^2+116x-6080=0
a = 1; b = 116; c = -6080;
Δ = b2-4ac
Δ = 1162-4·1·(-6080)
Δ = 37776
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{37776}=\sqrt{16*2361}=\sqrt{16}*\sqrt{2361}=4\sqrt{2361}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(116)-4\sqrt{2361}}{2*1}=\frac{-116-4\sqrt{2361}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(116)+4\sqrt{2361}}{2*1}=\frac{-116+4\sqrt{2361}}{2} $
| 2/7m+4=15 | | 3+2x=2x+11.5 | | 0.3p=6.9 | | 5+3x=41-x | | 4(x+7)=4(2x+7)-4x | | x(x+5)=8(x+3) | | 14-5x+8=22-5x | | x^2+115x+2880=0 | | 2d^2+10d-600=0 | | 4x+9=11,x= | | 6(x+3)+4=x+4=2x | | 3/7x+3=9 | | 3/7•x+3=9 | | E^5p-8+3=15 | | 2/3u-6/5=-5/4 | | 4x-5=8x-17 | | 3(3x-7)/2=30 | | m=∞(4,5) | | 30=16=x/5 | | 4a-9=3+9 | | m=0B(8,5) | | m=0(8,5) | | m=1(4,-5) | | 6=-6(w+8) | | 390=2(5)+2(x) | | m=-8/3(4,-6) | | m=-8/3(4,-5) | | 3(p-8)=15 | | m=-6(3/2,1/4) | | m=7(2,-4) | | 1.6+0.2x=0.8 | | -4g-7=41 |