(x+7)(x-9)+(x-7)(x+9)=0

Simple and best practice solution for (x+7)(x-9)+(x-7)(x+9)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+7)(x-9)+(x-7)(x+9)=0 equation:



(x+7)(x-9)+(x-7)(x+9)=0
We multiply parentheses ..
(+x^2-9x+7x-63)+(x-7)(x+9)=0
We get rid of parentheses
x^2-9x+7x+(x-7)(x+9)-63=0
We multiply parentheses ..
x^2+(+x^2+9x-7x-63)-9x+7x-63=0
We add all the numbers together, and all the variables
x^2+(+x^2+9x-7x-63)-2x-63=0
We get rid of parentheses
x^2+x^2+9x-7x-2x-63-63=0
We add all the numbers together, and all the variables
2x^2-126=0
a = 2; b = 0; c = -126;
Δ = b2-4ac
Δ = 02-4·2·(-126)
Δ = 1008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1008}=\sqrt{144*7}=\sqrt{144}*\sqrt{7}=12\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{7}}{2*2}=\frac{0-12\sqrt{7}}{4} =-\frac{12\sqrt{7}}{4} =-3\sqrt{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{7}}{2*2}=\frac{0+12\sqrt{7}}{4} =\frac{12\sqrt{7}}{4} =3\sqrt{7} $

See similar equations:

| 48-x=45 | | 2x+38=4x-22 | | 4.9+x=8.2 | | c+80+c=180 | | 3y-24=4y-43 | | 3s+5s+28=180 | | 9u-44=2u+5 | | 5s-74=s-2 | | 3w-68=w | | 9a-20+9a+56=180 | | z-15=-73 | | x-15=-73 | | w+8=-10 | | z-10=-21 | | 13.7=x/4 | | 16/3x=192 | | 0.4t-2+6t-20=0 | | g+8=-12 | | f+10=12 | | (x+4)^2=x | | -(x-40)^2=x | | (3x+29)+x=180 | | (2x-21)=(4x+15)=180 | | 1/10=9/x | | 24/36=8/x | | 8/x=24/36 | | 1/3x^2+2x+8=5 | | 8x+5=3x* | | 5x-11=48 | | Y=-10/3x+19 | | 1.4n=252 | | 9.9+3p=18.9 |

Equations solver categories