(x+5)+(x+5)+(2x+4)=4x(2x+3)

Simple and best practice solution for (x+5)+(x+5)+(2x+4)=4x(2x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+5)+(x+5)+(2x+4)=4x(2x+3) equation:



(x+5)+(x+5)+(2x+4)=4x(2x+3)
We move all terms to the left:
(x+5)+(x+5)+(2x+4)-(4x(2x+3))=0
We get rid of parentheses
x+x+2x-(4x(2x+3))+5+5+4=0
We calculate terms in parentheses: -(4x(2x+3)), so:
4x(2x+3)
We multiply parentheses
8x^2+12x
Back to the equation:
-(8x^2+12x)
We add all the numbers together, and all the variables
4x-(8x^2+12x)+14=0
We get rid of parentheses
-8x^2+4x-12x+14=0
We add all the numbers together, and all the variables
-8x^2-8x+14=0
a = -8; b = -8; c = +14;
Δ = b2-4ac
Δ = -82-4·(-8)·14
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-16\sqrt{2}}{2*-8}=\frac{8-16\sqrt{2}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+16\sqrt{2}}{2*-8}=\frac{8+16\sqrt{2}}{-16} $

See similar equations:

| 7x-15=46 | | -7(5x-2)+4x=-193-8x | | 5x+43+27=90 | | 10d+25(d+8)=280 | | -5/x+4=2/x-7 | | 3x+5+11=4x-10 | | -16.48-12.9k=-11.8k-1.63 | | 3x=4=2(x-2) | | 63=6.5x+17.5 | | 3x-4+2(x-5)=9x+8-2× | | 2x+5+23=90 | | -21.6=-24=w/4 | | 4(5+2x)=8(5+x) | | 7s/3+s=10 | | 50-10x=0 | | 7/8+y/12=-4 | | X/3=7x/2x-15 | | 2x=(x+50) | | 11(x–2)=22 | | ⅔+3m/5=11/20 | | 11x+6=39. | | 11q-5q-7=14+9q | | 2x-9+4x+12=180 | | -(2x-4)=4x | | (x+50)=2x | | -6=3/7v | | 7/15=7/5x | | 5x+21=-2 | | x-(-32)=8 | | -7v/9=14 | | 7d+0.20=5+0.30d | | 16-j=11 |

Equations solver categories