(x+4)(x-5)=2(x+4)

Simple and best practice solution for (x+4)(x-5)=2(x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+4)(x-5)=2(x+4) equation:



(x+4)(x-5)=2(x+4)
We move all terms to the left:
(x+4)(x-5)-(2(x+4))=0
We multiply parentheses ..
(+x^2-5x+4x-20)-(2(x+4))=0
We calculate terms in parentheses: -(2(x+4)), so:
2(x+4)
We multiply parentheses
2x+8
Back to the equation:
-(2x+8)
We get rid of parentheses
x^2-5x+4x-2x-20-8=0
We add all the numbers together, and all the variables
x^2-3x-28=0
a = 1; b = -3; c = -28;
Δ = b2-4ac
Δ = -32-4·1·(-28)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{121}=11$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-11}{2*1}=\frac{-8}{2} =-4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+11}{2*1}=\frac{14}{2} =7 $

See similar equations:

| x+2=√(x^2)+1 | | x+2=√x^2+1 | | 8(x+4)=x+39 | | 7x+7≤=-56 | | 8z=112* | | F(x)=x2-10x-24 | | 2(x+1)^2=50 | | 14z+8z+7z+11z=360 | | 3(3x+4)+-5=9x+-2 | | 4m+11≤=29.4 | | Y=4n+3 | | 70=100-x | | Ax7=49 | | v+51/8=9 | | 0.5x-3=0.6x-5 | | Y-20=4c | | 10x+20=4x–4 | | x+(-18)=1 | | b+3/13=7 | | 38=164-x/2 | | $10.50+y=$35.19 | | b+313=7 | | 7a+82=180 | | -6x2+23=-1 | | c−72/10=2 | | 38=(164-x)/2 | | 4n+3n-9=2n+5n=21 | | 76=164-x | | 54x-255=-1000 | | x²-8x=-29 | | 4x+12+5x-4=3x+98 | | 3+x+5=4x-30 |

Equations solver categories