If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+3)2+(4-x2)=2(x-4)(x+3)
We move all terms to the left:
(x+3)2+(4-x2)-(2(x-4)(x+3))=0
We add all the numbers together, and all the variables
(-1x^2+4)+(x+3)2-(2(x-4)(x+3))=0
We multiply parentheses
(-1x^2+4)+2x-(2(x-4)(x+3))+6=0
We get rid of parentheses
-1x^2+2x-(2(x-4)(x+3))+4+6=0
We multiply parentheses ..
-1x^2-(2(+x^2+3x-4x-12))+2x+4+6=0
We calculate terms in parentheses: -(2(+x^2+3x-4x-12)), so:We add all the numbers together, and all the variables
2(+x^2+3x-4x-12)
We multiply parentheses
2x^2+6x-8x-24
We add all the numbers together, and all the variables
2x^2-2x-24
Back to the equation:
-(2x^2-2x-24)
-1x^2+2x-(2x^2-2x-24)+10=0
We get rid of parentheses
-1x^2-2x^2+2x+2x+24+10=0
We add all the numbers together, and all the variables
-3x^2+4x+34=0
a = -3; b = 4; c = +34;
Δ = b2-4ac
Δ = 42-4·(-3)·34
Δ = 424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{424}=\sqrt{4*106}=\sqrt{4}*\sqrt{106}=2\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{106}}{2*-3}=\frac{-4-2\sqrt{106}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{106}}{2*-3}=\frac{-4+2\sqrt{106}}{-6} $
| 5=x/14+4 | | -18+14-18v=-12-20v | | 8-3(2c+7)=5(3c-4)-14 | | 7+x=(42+x)*2 | | 4(x=3)=2x+8 | | 6z+1-2z=6z-11+z | | -9.9j+7.52=-10.3j | | 6z+1-2z=6z-11+2 | | 7+x=42+2x | | (2x+9)=(5x+4) | | 5-3X=5x=-8+6+9X | | 14p=-12+20p | | 2(3b-5)=2(-4b+5)+8 | | x/10+5=-2 | | 5{m+1}=7{m-1} | | 15=-11+y | | 5.5c-17.23=-3.3c-2.27 | | 10+y=-12 | | 14.44-4.8k+14=-6.36-7.7k | | -24=2(w-9) | | (5y+7)(5y+7)=2 | | X2+4x=50 | | (5x+5)=(2x+2) | | 3z=1.2 | | (5y+7)^2=0 | | 8u-2=14u-20 | | 18+18t+10=-12+16t | | (4x—1)(-3x-5)=0 | | 9x-4=4(x-1)0-5x+4 | | 38=3-7w | | 12+15c=16c-5 | | x+1-(2/x)=0 |