(x+3)/3x+(2x+2)/4x=17/12

Simple and best practice solution for (x+3)/3x+(2x+2)/4x=17/12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)/3x+(2x+2)/4x=17/12 equation:


x in (-oo:+oo)

x*((x+3)/3)+x*((2*x+2)/4) = 17/12 // - 17/12

x*((x+3)/3)+x*((2*x+2)/4)-(17/12) = 0

x*((x+3)/3)+x*((2*x+2)/4)-17/12 = 0

(x*(x+3))/3+(x*(2*x+2))/4-17/12 = 0

(4*12*x*(x+3))/(3*4*12)+(3*12*x*(2*x+2))/(3*4*12)+(-17*3*4)/(3*4*12) = 0

4*12*x*(x+3)+3*12*x*(2*x+2)-17*3*4 = 0

120*x^2+216*x-204 = 0

120*x^2+216*x-204 = 0

12*(10*x^2+18*x-17) = 0

10*x^2+18*x-17 = 0

DELTA = 18^2-(-17*4*10)

DELTA = 1004

DELTA > 0

x = (1004^(1/2)-18)/(2*10) or x = (-1004^(1/2)-18)/(2*10)

x = (2*251^(1/2)-18)/20 or x = (-2*251^(1/2)-18)/20

12*(x-((-2*251^(1/2)-18)/20))*(x-((2*251^(1/2)-18)/20)) = 0

(12*(x-((-2*251^(1/2)-18)/20))*(x-((2*251^(1/2)-18)/20)))/(3*4*12) = 0

(12*(x-((-2*251^(1/2)-18)/20))*(x-((2*251^(1/2)-18)/20)))/(3*4*12) = 0 // * 3*4*12

12*(x-((-2*251^(1/2)-18)/20))*(x-((2*251^(1/2)-18)/20)) = 0

( x-((-2*251^(1/2)-18)/20) )

x-((-2*251^(1/2)-18)/20) = 0 // + (-2*251^(1/2)-18)/20

x = (-2*251^(1/2)-18)/20

( x-((2*251^(1/2)-18)/20) )

x-((2*251^(1/2)-18)/20) = 0 // + (2*251^(1/2)-18)/20

x = (2*251^(1/2)-18)/20

x in { (-2*251^(1/2)-18)/20, (2*251^(1/2)-18)/20 }

See similar equations:

| 14=6+v/2 | | 6.8-4.2y=5.6y-3 | | 71/2=x+3 | | 1/2f+1/3-1/6f+2=5/6f-2/3 | | 8x+2y=-24 | | p-.01=75.6 | | 6(4x-10)=72 | | 6x-6=x^2 | | -6(4x+7)= | | 4x^3-11x^2=3x | | 14+21m=35+14 | | -6(x+3)-12=10+8 | | .5z+6=3-2z | | X+3/5=z/5 | | -9+2x=5x+0 | | p-.10=75.60 | | 5x-15y=60 | | 6n-34=3n+5 | | 5+x+10+x= | | 2(2x-7)=6x-6 | | 0=y^2+12y+15 | | X+2x+x=14 | | 3/x+4/x-7/2x=3 | | -5d-9-7+d+20= | | s/1=0.8 | | x/2=x+5/4 | | 3w^2-7w+19=0 | | 3g/(-6)=5-g | | 14/6=m/27 | | -6y+5-4+7+y-8= | | 21v=10 | | 2x+10=3x-12 |

Equations solver categories