(x+3)+(1/2x)=24

Simple and best practice solution for (x+3)+(1/2x)=24 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)+(1/2x)=24 equation:



(x+3)+(1/2x)=24
We move all terms to the left:
(x+3)+(1/2x)-(24)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(x+3)+(+1/2x)-24=0
We get rid of parentheses
x+1/2x+3-24=0
We multiply all the terms by the denominator
x*2x+3*2x-24*2x+1=0
Wy multiply elements
2x^2+6x-48x+1=0
We add all the numbers together, and all the variables
2x^2-42x+1=0
a = 2; b = -42; c = +1;
Δ = b2-4ac
Δ = -422-4·2·1
Δ = 1756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1756}=\sqrt{4*439}=\sqrt{4}*\sqrt{439}=2\sqrt{439}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-2\sqrt{439}}{2*2}=\frac{42-2\sqrt{439}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+2\sqrt{439}}{2*2}=\frac{42+2\sqrt{439}}{4} $

See similar equations:

| y=5(11) | | -254=-5m+8(8-6m) | | 25(x+8)=75 | | 65=20+5q | | 15x-9=-69 | | A=4-8x | | 72=-8(b-8) | | 4=f+12 | | 1.5x+1x(2/3)=26 | | 2x-1.5=32.83 | | -20-4d=10-2d | | 61+7w=180 | | (22x+35)+(12x+43)=180 | | m+16.3=-28.7 | | -16+8k=7k | | 60w-200=860 | | 144+6c=180 | | 1.5x+1x(+2/3)-26=0 | | -4m-12=2m+6 | | 18t-5=20t-17 | | 6k+21=-153 | | 1.5x+(1x(+2/3))-26=0 | | 2/3-x=-4/9 | | 25x2-43=38 | | 0.5c–3=2(c–12) | | -6-4g=-3g | | x²+2x-7-3x=7 | | 6x-9=(2+3) | | 36+y=2×y | | -3=f+-7 | | (7x-24)=x | | 5(x-8)-3=-43 |

Equations solver categories