(x+3)(x-2)(x-1)=0

Simple and best practice solution for (x+3)(x-2)(x-1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)(x-2)(x-1)=0 equation:


Simplifying
(x + 3)(x + -2)(x + -1) = 0

Reorder the terms:
(3 + x)(x + -2)(x + -1) = 0

Reorder the terms:
(3 + x)(-2 + x)(x + -1) = 0

Reorder the terms:
(3 + x)(-2 + x)(-1 + x) = 0

Multiply (3 + x) * (-2 + x)
(3(-2 + x) + x(-2 + x))(-1 + x) = 0
((-2 * 3 + x * 3) + x(-2 + x))(-1 + x) = 0
((-6 + 3x) + x(-2 + x))(-1 + x) = 0
(-6 + 3x + (-2 * x + x * x))(-1 + x) = 0
(-6 + 3x + (-2x + x2))(-1 + x) = 0

Combine like terms: 3x + -2x = 1x
(-6 + 1x + x2)(-1 + x) = 0

Multiply (-6 + 1x + x2) * (-1 + x)
(-6(-1 + x) + 1x * (-1 + x) + x2(-1 + x)) = 0
((-1 * -6 + x * -6) + 1x * (-1 + x) + x2(-1 + x)) = 0
((6 + -6x) + 1x * (-1 + x) + x2(-1 + x)) = 0
(6 + -6x + (-1 * 1x + x * 1x) + x2(-1 + x)) = 0
(6 + -6x + (-1x + 1x2) + x2(-1 + x)) = 0
(6 + -6x + -1x + 1x2 + (-1 * x2 + x * x2)) = 0
(6 + -6x + -1x + 1x2 + (-1x2 + x3)) = 0

Combine like terms: -6x + -1x = -7x
(6 + -7x + 1x2 + -1x2 + x3) = 0

Combine like terms: 1x2 + -1x2 = 0
(6 + -7x + 0 + x3) = 0
(6 + -7x + x3) = 0

Solving
6 + -7x + x3 = 0

Solving for variable 'x'.

The solution to this equation could not be determined.

See similar equations:

| j-8=24 | | -2(3w+6x-10y+2xy)-4(-10w-5x+7y-5xy)= | | k+35=70 | | 1x^3+4x^2+2x+8=0 | | y+8=100 | | d+4=(-160) | | 2[3r-1]-4r+5= | | 6+r=42 | | 5+y=125 | | 6-4(a+7)=-(a+4) | | X^3-6n^2-n+6=0 | | 3x^2+6x+20=8 | | 3a+3p=2.49 | | (x+15)(1.25x+15)=3(1.25x(x)) | | 3m+8=3(4+m)-3 | | 1=10+3w | | Z-45=45 | | -30x-[-2x]= | | (7x-11)=-(-13) | | 1a+3p=1.11 | | K-29=75 | | (4x+3)+(-5x+2)= | | x^3-5x^2+14x-10=0 | | 5x+1=x+37 | | (4x+3)+(-5+2)= | | 16t^2-48=0 | | (17n+13)=0 | | 20-e=1 | | (2x+20)=5 | | -8+2a=2 | | 15-4n=-1 | | 7x+2=9x-9 |

Equations solver categories