(x+3)(x-1)-(x+1)(x-1)=+8

Simple and best practice solution for (x+3)(x-1)-(x+1)(x-1)=+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+3)(x-1)-(x+1)(x-1)=+8 equation:



(x+3)(x-1)-(x+1)(x-1)=+8
We move all terms to the left:
(x+3)(x-1)-(x+1)(x-1)-(+8)=0
We add all the numbers together, and all the variables
(x+3)(x-1)-(x+1)(x-1)-8=0
We use the square of the difference formula
x^2+(x+3)(x-1)+1-8=0
We multiply parentheses ..
x^2+(+x^2-1x+3x-3)+1-8=0
We add all the numbers together, and all the variables
x^2+(+x^2-1x+3x-3)-7=0
We get rid of parentheses
x^2+x^2-1x+3x-3-7=0
We add all the numbers together, and all the variables
2x^2+2x-10=0
a = 2; b = 2; c = -10;
Δ = b2-4ac
Δ = 22-4·2·(-10)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{21}}{2*2}=\frac{-2-2\sqrt{21}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{21}}{2*2}=\frac{-2+2\sqrt{21}}{4} $

See similar equations:

| 7x+5=-8x+6 | | 36-2x+4)-4x-2=-20 | | 7h=8h-5+$h | | 12-2n=15 | | -(x-9)=-x+9 | | (x+3)(x-1)-(x+1)(x-1)=8 | | -21=k+14 | | 1/6=-1/2u+3/5 | | 5(x+2)-4(2x-5)=3(2x+1) | | m=916.666666667 | | 3^x-1+3^x+2=84 | | 13=5x+2(-x+20) | | 1/6=-1/2u | | 2t-5+2=1+2(t-4) | | -9g-5=-30 | | 9+3x=x | | -12n-5=-149 | | -3p+12-3p=-24 | | 12-p=p-2(6+p) | | t/3=24 | | 2x+9+5x-3=4x+8 | | 3w-3=2w+8. | | 8w=w+7 | | 5x+17+8x-13+x+21=180 | | 462=2x+462/5 | | 34.5=e-9.8 | | 3/2x13+1=x | | 462=3x | | 3u+2=u+8 | | q-87=-14 | | 6y+2-15y-4=-38 | | 14x^2-25x-9=0 |

Equations solver categories