If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+2)2+(x)2=394
We move all terms to the left:
(x+2)2+(x)2-(394)=0
We add all the numbers together, and all the variables
x^2+(x+2)2-394=0
We multiply parentheses
x^2+2x+4-394=0
We add all the numbers together, and all the variables
x^2+2x-390=0
a = 1; b = 2; c = -390;
Δ = b2-4ac
Δ = 22-4·1·(-390)
Δ = 1564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1564}=\sqrt{4*391}=\sqrt{4}*\sqrt{391}=2\sqrt{391}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{391}}{2*1}=\frac{-2-2\sqrt{391}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{391}}{2*1}=\frac{-2+2\sqrt{391}}{2} $
| x/4+6=6 | | 10x(2Y-1)=118 | | 3x-3+4-7x-3=16 | | 3x-10=x-38 | | 3.5c-13.29+8.6c=11.8c-16.77 | | a/4-2=28 | | 360=60n | | 2x+x/2=25 | | -17-8u=13-6u | | -23.14+d=-33.14 | | 4+6h=4h | | 3/10b=2 | | 310b=2 | | -14m-20=-11m+19 | | 10-11=4n | | -4(p+1)+2(p-5)=-2p-14 | | -18-18b=-3b+16-17b | | 7-3q=-9-5q+4 | | (4x^{2}+2x+1)=(3x^{2}+4x+1) | | 10j+6=4j | | –5x=3x–24 | | 7x+42=9x-8 | | 5/3x-6=-1 | | 27=x/0.4 | | .s-31=20.6 | | k+(4k+32=72 | | 2/3x=-10/3 | | -10w+w=-4w | | -4.8z-18.13=13.73+7z | | (x+3)/6=4x+3 | | 21x/x= | | 3-2(x-1)=4(x+6) |