(x+2)+(x+4)(x+6)=4(x+18)

Simple and best practice solution for (x+2)+(x+4)(x+6)=4(x+18) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+2)+(x+4)(x+6)=4(x+18) equation:



(x+2)+(x+4)(x+6)=4(x+18)
We move all terms to the left:
(x+2)+(x+4)(x+6)-(4(x+18))=0
We get rid of parentheses
x+(x+4)(x+6)-(4(x+18))+2=0
We multiply parentheses ..
(+x^2+6x+4x+24)+x-(4(x+18))+2=0
We calculate terms in parentheses: -(4(x+18)), so:
4(x+18)
We multiply parentheses
4x+72
Back to the equation:
-(4x+72)
We get rid of parentheses
x^2+6x+4x+x-4x+24-72+2=0
We add all the numbers together, and all the variables
x^2+7x-46=0
a = 1; b = 7; c = -46;
Δ = b2-4ac
Δ = 72-4·1·(-46)
Δ = 233
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{233}}{2*1}=\frac{-7-\sqrt{233}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{233}}{2*1}=\frac{-7+\sqrt{233}}{2} $

See similar equations:

| (x)(2x)÷2=16 | | 8x-15=-11 | | 16n-69=-13 | | (k-4)^3/2=729 | | 4p+5=37 | | 9.9=4.4z-4 | | 0=(x(x))+9x-234 | | 5x/3x=42 | | 3(3x-5)+2x=5x+9-2x | | 0=x2+9x-234 | | 5g-2.3=18.8 | | 5s-15=2s | | 31/2/x=6/4 | | 1875+50x-x^2=0 | | x-30+2x+2x+15=360 | | 2x+3=10x+5 | | 10=1+4b+5b | | 11/5=v/13 | | X(x-2)-5(x-3)=12 | | 10x+8=3x+5 | | 12/y=13/11 | | 5x-4x/3=x/6-2/3 | | 2a^2+24a=-86 | | (100-10x)(3+0.5x)=300 | | 2(a+3)=3(a-1) | | 4x+14=13+8+4 | | 2x^2-1x-1=5x+19 | | 2(-6)+5y=-32 | | 2^(3x-5)=1/16 | | 12^2-56=w | | 2x+5(x+2)=-32 | | -1/4=-(2/7)v-(5/8) |

Equations solver categories