(x+2)(x-2)=(x+1)2+7

Simple and best practice solution for (x+2)(x-2)=(x+1)2+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+2)(x-2)=(x+1)2+7 equation:



(x+2)(x-2)=(x+1)2+7
We move all terms to the left:
(x+2)(x-2)-((x+1)2+7)=0
We use the square of the difference formula
x^2-((x+1)2+7)-4=0
We calculate terms in parentheses: -((x+1)2+7), so:
(x+1)2+7
We multiply parentheses
2x+2+7
We add all the numbers together, and all the variables
2x+9
Back to the equation:
-(2x+9)
We get rid of parentheses
x^2-2x-9-4=0
We add all the numbers together, and all the variables
x^2-2x-13=0
a = 1; b = -2; c = -13;
Δ = b2-4ac
Δ = -22-4·1·(-13)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{14}}{2*1}=\frac{2-2\sqrt{14}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{14}}{2*1}=\frac{2+2\sqrt{14}}{2} $

See similar equations:

| -3.9=-26t | | x+(x*6.5*238/100*360)=23520 | | -(x+4)=3x-10 | | (3m+4)(m+4)=0 | | 33=1,5x | | 7-13y=-23 | | x+4=x+2/3 | | 3(x-2)^2+5=17 | | (4x+5x)=0 | | 3x+2/4=x+3 | | 28x+40=(27x-15)+20 | | x^2+450x+10,000=0 | | 0=y^2-13y+32 | | 2x+20=2x+3x+2 | | 8-6x-3=-41+4x-14 | | 3(x-2)+4(3-2x)=9 | | -1.4=7.6-3y | | x2°-1=63 | | 3p/4=17 | | 8x-5-(5-6x)=0 | | 4×-1=3x | | q-1=15 | | 2b+18=43 | | 3a-13=18 | | 5j+4=3j | | 9a^2+46a+5=0 | | 11x+7=67 | | x+0.04x=147 | | 8c^2-41c-42=0 | | (6n+7)=(2n+5) | | (-2-4w)=(7w-8) | | 8=-5x-8 |

Equations solver categories