(x+2)(x+3)=8+13x

Simple and best practice solution for (x+2)(x+3)=8+13x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+2)(x+3)=8+13x equation:



(x+2)(x+3)=8+13x
We move all terms to the left:
(x+2)(x+3)-(8+13x)=0
We add all the numbers together, and all the variables
(x+2)(x+3)-(13x+8)=0
We get rid of parentheses
(x+2)(x+3)-13x-8=0
We multiply parentheses ..
(+x^2+3x+2x+6)-13x-8=0
We get rid of parentheses
x^2+3x+2x-13x+6-8=0
We add all the numbers together, and all the variables
x^2-8x-2=0
a = 1; b = -8; c = -2;
Δ = b2-4ac
Δ = -82-4·1·(-2)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-6\sqrt{2}}{2*1}=\frac{8-6\sqrt{2}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+6\sqrt{2}}{2*1}=\frac{8+6\sqrt{2}}{2} $

See similar equations:

| 3(v-4)-4=-3(-6v+4)-v | | 31=-7v+5(v+7) | | 4•(7+2)=(4•x)+(4•x) | | 54x=9/2x^2 | | f(-7)=13(-7)+11(-7)-21 | | y=2/5(5)+3 | | x-4^3-5=0 | | 2/5(5)+3=y | | 24x^2-22x^2-30x=0 | | 2÷5x+35=3 | | b+-6(7b+7)=-124 | | 4z^2=68 | | w-2.13=3.48 | | y^2+y=10100 | | 8x(4x+60)=180 | | 8x(4x+60)=90 | | 5/8p=7 | | y^2+y=14520 | | 8x=(4x+60) | | (x/9)*15−47=28 | | -4/5t=2 | | 6x-8+3(2x+4)=-2(x+6) | | (6)=-4/3x6+5 | | 4x^2+432=0 | | -2/3y=-15 | | 7(x-2)-7=-5(-4x+3)-4x | | -3(2w-4)+2w=4(w+4) | | -5(-7x+7)+6=-99 | | 5(u-4)=-9u-48 | | -4/3x3=5 | | 5(I-4)=-9u-48 | | 9y+26=7(y+4) |

Equations solver categories