(x+2)(x+3)+(x-3)+(x-2)-2x(x+1)=0

Simple and best practice solution for (x+2)(x+3)+(x-3)+(x-2)-2x(x+1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+2)(x+3)+(x-3)+(x-2)-2x(x+1)=0 equation:



(x+2)(x+3)+(x-3)+(x-2)-2x(x+1)=0
We multiply parentheses
-2x^2+(x+2)(x+3)+(x-3)+(x-2)-2x=0
We get rid of parentheses
-2x^2+(x+2)(x+3)+x+x-2x-3-2=0
We multiply parentheses ..
-2x^2+(+x^2+3x+2x+6)+x+x-2x-3-2=0
We add all the numbers together, and all the variables
-2x^2+(+x^2+3x+2x+6)-5=0
We get rid of parentheses
-2x^2+x^2+3x+2x+6-5=0
We add all the numbers together, and all the variables
-1x^2+5x+1=0
a = -1; b = 5; c = +1;
Δ = b2-4ac
Δ = 52-4·(-1)·1
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{29}}{2*-1}=\frac{-5-\sqrt{29}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{29}}{2*-1}=\frac{-5+\sqrt{29}}{-2} $

See similar equations:

| 4(9x+2)=152# | | 3x+10=x+92 | | 5t-19=6 | | 0,5x+5=0,16x+6 | | X+6=2x-13 | | 16x-10=7x | | 2x/4=0 | | 9+9+d+d=45 | | 5x/(2x-3)=0 | | 4(79.9j-81.69)=-42.4j+2(12.4j-11.64) | | 5/7x-3-4/9=0 | | 3=x/5-12 | | 7=x/3-4 | | x/6+13=20 | | x/8+20=25 | | x/5+13=25 | | 18=13+1x | | 5n^+7n-90=0 | | 9x+81=163 | | 8x+4=75 | | x-2,5x+6+1,8x=1,8x-2,5x+6,5 | | 2t-16=-t-9-4t | | 21-n=22 | | 3z^2+6z+15=0 | | -4(-2-2x)=-6(x+1) | | x-2,5x+6+1,8x=-2,5x+6,5 | | a+3+1=10 | | 7n-n=6(5+8n)-3(1+5n) | | d+7=28 | | 18s=5s+52 | | 3(6n+3)=-4(7-6n)+7 | | (3x+88)+(x+36)+(2x+4)=180 |

Equations solver categories