(x+2)(3x-5)=(3x-5)(2x-1)

Simple and best practice solution for (x+2)(3x-5)=(3x-5)(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+2)(3x-5)=(3x-5)(2x-1) equation:



(x+2)(3x-5)=(3x-5)(2x-1)
We move all terms to the left:
(x+2)(3x-5)-((3x-5)(2x-1))=0
We multiply parentheses ..
(+3x^2-5x+6x-10)-((3x-5)(2x-1))=0
We calculate terms in parentheses: -((3x-5)(2x-1)), so:
(3x-5)(2x-1)
We multiply parentheses ..
(+6x^2-3x-10x+5)
We get rid of parentheses
6x^2-3x-10x+5
We add all the numbers together, and all the variables
6x^2-13x+5
Back to the equation:
-(6x^2-13x+5)
We get rid of parentheses
3x^2-6x^2-5x+6x+13x-10-5=0
We add all the numbers together, and all the variables
-3x^2+14x-15=0
a = -3; b = 14; c = -15;
Δ = b2-4ac
Δ = 142-4·(-3)·(-15)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-4}{2*-3}=\frac{-18}{-6} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+4}{2*-3}=\frac{-10}{-6} =1+2/3 $

See similar equations:

| 30=-5+5y | | 7e-2=3e+1 | | (5x+9)(8x+13)+(12x+3)(5x+9)=0 | | 19-(2x+3)=2(x+3+x | | 4+2+6x5=30 | | 9x+14=0 | | 4+2=6x5=30 | | g+3+1/2=10 | | 15y+6=0 | | 4^7x=7^(x=2) | | 4+2x6x5=14 | | ?x?-?=56 | | x(0,01+x)/0,01-x=0,012 | | 4+2x6x5=30 | | (8x+32)/6=x+5 | | 4+2=6x5 | | x+3=262 | | -2(-1y+-4)=8 | | x=12/6(-2) | | j/9+5=10 | | 77=6(m-4)-5 | | u/7-9=0 | | -3x+58=x-6 | | w/4-6=75 | | Y=0x+-4 | | 28x-60=108 | | 1/4(4+x)=4/3 | | 2x+2x=4x2 | | 2(4x+7)=52 | | 10x-10+9x-2=140 | | (x+2)/(x-3)=12 | | 3x(5x+-6)=12 |

Equations solver categories