(x+10)(x-6)-(x-1)(x+1)=1

Simple and best practice solution for (x+10)(x-6)-(x-1)(x+1)=1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+10)(x-6)-(x-1)(x+1)=1 equation:



(x+10)(x-6)-(x-1)(x+1)=1
We move all terms to the left:
(x+10)(x-6)-(x-1)(x+1)-(1)=0
We use the square of the difference formula
x^2+(x+10)(x-6)+1-1=0
We multiply parentheses ..
x^2+(+x^2-6x+10x-60)+1-1=0
We add all the numbers together, and all the variables
x^2+(+x^2-6x+10x-60)=0
We get rid of parentheses
x^2+x^2-6x+10x-60=0
We add all the numbers together, and all the variables
2x^2+4x-60=0
a = 2; b = 4; c = -60;
Δ = b2-4ac
Δ = 42-4·2·(-60)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{31}}{2*2}=\frac{-4-4\sqrt{31}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{31}}{2*2}=\frac{-4+4\sqrt{31}}{4} $

See similar equations:

| (2x-4)(7x+8)=0 | | 6x+7=x+17 | | (-5t-18)/6=0 | | (-2x+6)(x+3)=0 | | a=(480*3)/(9,5*31,5+(9,5-a)*(31,5-a)+(9,5*31,5*(9,5-a)*(31,5-a))^(1/2)) | | -5t+-18/6=0 | | 10x-9=3x+5 | | 11a+8=13a | | 3x-4=5(2x-5) | | 2.4x-12=8.4x+42 | | 2(t+3)/3=(3t-8)/2 | | 3m+1/2=3/8+m | | a^2-3/4a+2=0 | | 3x+10=40−2x | | 0.18+0.3m=0.32-0.4m | | 5d+45=10d | | 24x+3=11 | | 3x+57=12 | | 5a+2=2a+10 | | x/3-x/5=3/5 | | (5/100)=(x/5) | | x/3-x/2=16 | | 2+x/2=3-x | | 0,3x+4=2-x/3 | | -3x+6x-2=1 | | 14x+15=8+12x+7 | | 6x-2=-3x+1 | | -7=5x+36 | | 6.5+x=42.5 | | 3(w-3)=9 | | 17x^2-11x-2=2x^2 | | 3(5x+1)=15x+2 |

Equations solver categories