(x+1)=(2x+1)(3x)

Simple and best practice solution for (x+1)=(2x+1)(3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)=(2x+1)(3x) equation:



(x+1)=(2x+1)(3x)
We move all terms to the left:
(x+1)-((2x+1)(3x))=0
We get rid of parentheses
x-((2x+1)3x)+1=0
We calculate terms in parentheses: -((2x+1)3x), so:
(2x+1)3x
We multiply parentheses
6x^2+3x
Back to the equation:
-(6x^2+3x)
We get rid of parentheses
-6x^2+x-3x+1=0
We add all the numbers together, and all the variables
-6x^2-2x+1=0
a = -6; b = -2; c = +1;
Δ = b2-4ac
Δ = -22-4·(-6)·1
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{7}}{2*-6}=\frac{2-2\sqrt{7}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{7}}{2*-6}=\frac{2+2\sqrt{7}}{-12} $

See similar equations:

| x^2+9x=20=0 | | x^2-8x=40 | | 1/8x+4=12-4x | | 10^2x-2*10^-2x=1 | | 14x+18x-6+1=-2x+1-6 | | 4x+2=-32 | | 3((2x-1)=x+2 | | x/7=3x+2 | | 10x+15x-8+5=-6x+5-8 | | -4x+6=6x+26 | | 9d=19d+10 | | z-0.2z+48=1.6(z-0.5) | | 3x-12=-72 | | 8+6x=25-3x | | 8+6x=25-3 | | (6x-19)=(11x-22) | | 19/40=x/3.5 | | 2(6x+5)=10x+2 | | 13u-4u=18 | | x(x+16)=-64 | | Y=x=5 | | 75=9-7c | | 9t-3=33 | | 70=10-1/4x | | 3z/7+5=1 | | 8n-3=5n+7 | | x=3(2x+1)-3(5x-4) | | 21y=5=8 | | x+4x+(x-44)=448 | | 5x-7=-3-23 | | -2m^2+13m-15=0 | | 12^2-13x-7175=0 |

Equations solver categories