(x+1)2=(x+1)(3x+2)

Simple and best practice solution for (x+1)2=(x+1)(3x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)2=(x+1)(3x+2) equation:



(x+1)2=(x+1)(3x+2)
We move all terms to the left:
(x+1)2-((x+1)(3x+2))=0
We multiply parentheses
2x-((x+1)(3x+2))+2=0
We multiply parentheses ..
-((+3x^2+2x+3x+2))+2x+2=0
We calculate terms in parentheses: -((+3x^2+2x+3x+2)), so:
(+3x^2+2x+3x+2)
We get rid of parentheses
3x^2+2x+3x+2
We add all the numbers together, and all the variables
3x^2+5x+2
Back to the equation:
-(3x^2+5x+2)
We add all the numbers together, and all the variables
2x-(3x^2+5x+2)+2=0
We get rid of parentheses
-3x^2+2x-5x-2+2=0
We add all the numbers together, and all the variables
-3x^2-3x=0
a = -3; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·(-3)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*-3}=\frac{0}{-6} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*-3}=\frac{6}{-6} =-1 $

See similar equations:

| 5x2-4x2=16 | | 5(2+1)=3(x+2)+11 | | 204=263-w | | -u+171=12 | | 5(t-7)-2(t-4)=3t | | 0.5y–1.1=4.9 | | 197-y=243 | | 1/9x+38=5/7x | | 19-3x=7-9x | | Y1=-19.76x+227 | | n+7-4=19 | | F(x)=70.x | | F(x)=700.x | | 700(x)=2.50.x | | 1000+2x^2=8000 | | (0.3x+0.75x-6)+3=x | | 1+2x^2=8 | | 100+2x^2=8 | | 6(2)+2y=4 | | 3x-12=-4+43 | | 3/4w=14.25 | | (3x+13)²=(3-2x)² | | 10.77+w=29.77 | | 3/4w=14+1/4 | | b^2+81b=0 | | 3/4w=14/0.25 | | w-20.27=-1.27 | | x=(1.2-x)/1.4 | | 1f=2f+2/3 | | 1.4=(1.2-x)/x | | 20+0.05t=10+0.07 | | 4n+40-40=34-20 |

Equations solver categories