(x+1)(x-7)=(x-1)2

Simple and best practice solution for (x+1)(x-7)=(x-1)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x-7)=(x-1)2 equation:



(x+1)(x-7)=(x-1)2
We move all terms to the left:
(x+1)(x-7)-((x-1)2)=0
We multiply parentheses ..
(+x^2-7x+x-7)-((x-1)2)=0
We calculate terms in parentheses: -((x-1)2), so:
(x-1)2
We multiply parentheses
2x-2
Back to the equation:
-(2x-2)
We get rid of parentheses
x^2-7x+x-2x-7+2=0
We add all the numbers together, and all the variables
x^2-8x-5=0
a = 1; b = -8; c = -5;
Δ = b2-4ac
Δ = -82-4·1·(-5)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{21}}{2*1}=\frac{8-2\sqrt{21}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{21}}{2*1}=\frac{8+2\sqrt{21}}{2} $

See similar equations:

| f-129=367 | | 13.2+12.5x=37.2 | | 3d-2d-5=-9 | | 2x+4(x+1)‒x=5x+4 | | 20x+5.50= | | 11+6x−14=53​ (15x−5) | | 4x+3=5x‒7 | | s+248=498 | | y÷ 45= 12 | | y4=12 | | 2/3x-8=56.60 | | 6x−35=29−2x | | d+120=264 | | 3(-2n-19)=-15 | | 5-x-3=4x-8 | | p+75=210.60 | | M=-8r2+11r-6T=-7-9r+14 | | 3(x-4)+7x=-82 | | 25²=125x+1 | | 720=90+90+4x | | M=-8r2+11r-6M=-7-9r+14 | | 9(4-5)=10=+4s | | 7v+10=12v | | 12x²+7x=10 | | (1)/(8))^((2-5x))=((1)/(2))^((x+13)) | | 12+12x=16x+32 | | 10x^2-25=x | | -9-9x=-25 | | 7x13=106 | | 105/x=3 | | 8.6-y-3=10 | | 9k-4=77 |

Equations solver categories