(x+1)(x-(1-i))(x-(1-i))=

Simple and best practice solution for (x+1)(x-(1-i))(x-(1-i))= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(x-(1-i))(x-(1-i))= equation:


Simplifying
(x + 1)(x + -1(1 + -1i))(x + -1(1 + -1i)) = 0

Reorder the terms:
(1 + x)(x + -1(1 + -1i))(x + -1(1 + -1i)) = 0
(1 + x)(x + (1 * -1 + -1i * -1))(x + -1(1 + -1i)) = 0
(1 + x)(x + (-1 + 1i))(x + -1(1 + -1i)) = 0

Reorder the terms:
(1 + x)(-1 + 1i + x)(x + -1(1 + -1i)) = 0
(1 + x)(-1 + 1i + x)(x + (1 * -1 + -1i * -1)) = 0
(1 + x)(-1 + 1i + x)(x + (-1 + 1i)) = 0

Reorder the terms:
(1 + x)(-1 + 1i + x)(-1 + 1i + x) = 0

Multiply (1 + x) * (-1 + 1i + x)
(1(-1 + 1i + x) + x(-1 + 1i + x))(-1 + 1i + x) = 0
((-1 * 1 + 1i * 1 + x * 1) + x(-1 + 1i + x))(-1 + 1i + x) = 0
((-1 + 1i + 1x) + x(-1 + 1i + x))(-1 + 1i + x) = 0
(-1 + 1i + 1x + (-1 * x + 1i * x + x * x))(-1 + 1i + x) = 0

Reorder the terms:
(-1 + 1i + 1x + (1ix + -1x + x2))(-1 + 1i + x) = 0
(-1 + 1i + 1x + (1ix + -1x + x2))(-1 + 1i + x) = 0

Reorder the terms:
(-1 + 1i + 1ix + 1x + -1x + x2)(-1 + 1i + x) = 0

Combine like terms: 1x + -1x = 0
(-1 + 1i + 1ix + 0 + x2)(-1 + 1i + x) = 0
(-1 + 1i + 1ix + x2)(-1 + 1i + x) = 0

Multiply (-1 + 1i + 1ix + x2) * (-1 + 1i + x)
(-1(-1 + 1i + x) + 1i * (-1 + 1i + x) + 1ix * (-1 + 1i + x) + x2(-1 + 1i + x)) = 0
((-1 * -1 + 1i * -1 + x * -1) + 1i * (-1 + 1i + x) + 1ix * (-1 + 1i + x) + x2(-1 + 1i + x)) = 0
((1 + -1i + -1x) + 1i * (-1 + 1i + x) + 1ix * (-1 + 1i + x) + x2(-1 + 1i + x)) = 0
(1 + -1i + -1x + (-1 * 1i + 1i * 1i + x * 1i) + 1ix * (-1 + 1i + x) + x2(-1 + 1i + x)) = 0

Reorder the terms:
(1 + -1i + -1x + (-1i + 1ix + 1i2) + 1ix * (-1 + 1i + x) + x2(-1 + 1i + x)) = 0
(1 + -1i + -1x + (-1i + 1ix + 1i2) + 1ix * (-1 + 1i + x) + x2(-1 + 1i + x)) = 0
(1 + -1i + -1x + -1i + 1ix + 1i2 + (-1 * 1ix + 1i * 1ix + x * 1ix) + x2(-1 + 1i + x)) = 0

Reorder the terms:
(1 + -1i + -1x + -1i + 1ix + 1i2 + (-1ix + 1ix2 + 1i2x) + x2(-1 + 1i + x)) = 0
(1 + -1i + -1x + -1i + 1ix + 1i2 + (-1ix + 1ix2 + 1i2x) + x2(-1 + 1i + x)) = 0
(1 + -1i + -1x + -1i + 1ix + 1i2 + -1ix + 1ix2 + 1i2x + (-1 * x2 + 1i * x2 + x * x2)) = 0

Reorder the terms:
(1 + -1i + -1x + -1i + 1ix + 1i2 + -1ix + 1ix2 + 1i2x + (1ix2 + -1x2 + x3)) = 0
(1 + -1i + -1x + -1i + 1ix + 1i2 + -1ix + 1ix2 + 1i2x + (1ix2 + -1x2 + x3)) = 0

Reorder the terms:
(1 + -1i + -1i + 1ix + -1ix + 1ix2 + 1ix2 + 1i2 + 1i2x + -1x + -1x2 + x3) = 0

Combine like terms: -1i + -1i = -2i
(1 + -2i + 1ix + -1ix + 1ix2 + 1ix2 + 1i2 + 1i2x + -1x + -1x2 + x3) = 0

Combine like terms: 1ix + -1ix = 0
(1 + -2i + 0 + 1ix2 + 1ix2 + 1i2 + 1i2x + -1x + -1x2 + x3) = 0
(1 + -2i + 1ix2 + 1ix2 + 1i2 + 1i2x + -1x + -1x2 + x3) = 0

Combine like terms: 1ix2 + 1ix2 = 2ix2
(1 + -2i + 2ix2 + 1i2 + 1i2x + -1x + -1x2 + x3) = 0

Solving
1 + -2i + 2ix2 + 1i2 + 1i2x + -1x + -1x2 + x3 = 0

Solving for variable 'i'.

The solution to this equation could not be determined.

See similar equations:

| 8y-4=41 | | -2x-15=-13 | | 5b+3=14 | | 22=2(5x-4) | | 2.6d=30 | | x+3/2x+2x=27 | | 2(u-8)-7u=9 | | s-10=54 | | -2x+21=25 | | 4x-4=5x-11 | | x/-9=-3-(-2) | | 12x+3=5x+59 | | 4/n=2/(11/12) | | -x+22=-4x+34 | | 9=x^3+6x+1 | | 9(3x+1)=15(2x-3) | | 11x+16=5x+76 | | 2x+15=-5x+64 | | 7x-12=5x-12 | | (650-x)*0.5=(450-x) | | 650*0.5=450-x+x*0.5 | | 5(5x+1)=6(4x-2) | | -6x+2=-4x+14 | | F(x)=4cos^2x | | 19.95=22.80+0.5x | | 4/5x-4=7 | | 3h+10=25 | | 3h+10=c | | H^2+7H=180 | | 6(x-3)-6=15x-123 | | 3x+3x+2x+2x=216 | | 3/4×-3=-6 |

Equations solver categories