If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x+1)(x+2)=(x+3)(x+4)+(x+5)(x+6)
We move all terms to the left:
(x+1)(x+2)-((x+3)(x+4)+(x+5)(x+6))=0
We multiply parentheses ..
(+x^2+2x+x+2)-((x+3)(x+4)+(x+5)(x+6))=0
We calculate terms in parentheses: -((x+3)(x+4)+(x+5)(x+6)), so:We get rid of parentheses
(x+3)(x+4)+(x+5)(x+6)
We multiply parentheses ..
(+x^2+4x+3x+12)+(x+5)(x+6)
We get rid of parentheses
x^2+4x+3x+(x+5)(x+6)+12
We multiply parentheses ..
x^2+(+x^2+6x+5x+30)+4x+3x+12
We add all the numbers together, and all the variables
x^2+(+x^2+6x+5x+30)+7x+12
We get rid of parentheses
x^2+x^2+6x+5x+7x+30+12
We add all the numbers together, and all the variables
2x^2+18x+42
Back to the equation:
-(2x^2+18x+42)
x^2-2x^2+2x+x-18x+2-42=0
We add all the numbers together, and all the variables
-1x^2-15x-40=0
a = -1; b = -15; c = -40;
Δ = b2-4ac
Δ = -152-4·(-1)·(-40)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{65}}{2*-1}=\frac{15-\sqrt{65}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{65}}{2*-1}=\frac{15+\sqrt{65}}{-2} $
| 32.5/100=n/360 | | 22-12=2(x-2) | | 1/20=n/70 | | 18+4y-4=16y-10-4y | | 70/35=n/85 | | 9-3r+7=6r-9(r-2) | | 18+4y-4=16y-104y | | -61=7j-26 | | -11x+6-5(x+1)=-5x-(10x-3)+5 | | 27.50x=23.25x | | 3r+10=2(2r-20) | | 7j+2/6=1/2 | | 3/n=18/6 | | 8s-6=2(2(s+11) | | 5/8=15/y | | 6a+54=194 | | (1/x)+(2/x+5)=17/36 | | x^2-49x+13=0 | | 42a+88=328 | | -7(x+3)+3x+5=5x+6 | | 3n-(18+15n)=4n | | -12x+22=64 | | (t+2)^2=2t^2+5t-2 | | -2x+15=100 | | (17+2)1/2=h | | 17=33-3(-1-4x) | | -6x-7x=-7-48 | | 2-15n=-5(-3n+2 | | -2/3x-1/2=6 | | x/3-11=29 | | 9x-42=121 | | -5/3+y=-1/12-5/6 |