(x+1)(3x-1)=(2x-1)(4x-2)

Simple and best practice solution for (x+1)(3x-1)=(2x-1)(4x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+1)(3x-1)=(2x-1)(4x-2) equation:



(x+1)(3x-1)=(2x-1)(4x-2)
We move all terms to the left:
(x+1)(3x-1)-((2x-1)(4x-2))=0
We multiply parentheses ..
(+3x^2-1x+3x-1)-((2x-1)(4x-2))=0
We calculate terms in parentheses: -((2x-1)(4x-2)), so:
(2x-1)(4x-2)
We multiply parentheses ..
(+8x^2-4x-4x+2)
We get rid of parentheses
8x^2-4x-4x+2
We add all the numbers together, and all the variables
8x^2-8x+2
Back to the equation:
-(8x^2-8x+2)
We get rid of parentheses
3x^2-8x^2-1x+3x+8x-1-2=0
We add all the numbers together, and all the variables
-5x^2+10x-3=0
a = -5; b = 10; c = -3;
Δ = b2-4ac
Δ = 102-4·(-5)·(-3)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{10}}{2*-5}=\frac{-10-2\sqrt{10}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{10}}{2*-5}=\frac{-10+2\sqrt{10}}{-10} $

See similar equations:

| 14u+5u-3u-9u=14 | | −2(4x−1)−3x+5=-26−26 | | -16x^2+32x+160=0 | | 20a-15a+4a=9 | | 13q+2q-8q-4q=9 | | 3y+6=4y-22 | | n+3.87=9.4 | | -3x+19=-26 | | 3v-3v+2v+4v-4v=10 | | 5d-9=(24) | | 23+90+5x-18=180 | | 23s=–322 | | 7h+20=(-8) | | 4x-7917+x^2=0 | | 8v-7v=10 | | 776=s+462 | | 4x-7917-4x=0 | | 2a-16=a+2 | | –27=2x+3 | | 2(6+x)=14+2x | | 86+11x=11x | | k÷30=5 | | 44-2x=x | | 44+76+3x=180 | | w÷4=80 | | 4c−7=17 | | 57+6x+19+6x-16=180 | | x^2=384 | | (3x+12)+(5x+5)+(4x+7)=180 | | 4y+9+5y=10y-1 | | x+.15x=50000 | | 10.5h=210 |

Equations solver categories