(x+(2+4i))(x-(2+4i))(x-1)=0

Simple and best practice solution for (x+(2+4i))(x-(2+4i))(x-1)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x+(2+4i))(x-(2+4i))(x-1)=0 equation:


Simplifying
(x + (2 + 4i))(x + -1(2 + 4i))(x + -1) = 0

Remove parenthesis around (2 + 4i)
(x + 2 + 4i)(x + -1(2 + 4i))(x + -1) = 0

Reorder the terms:
(2 + 4i + x)(x + -1(2 + 4i))(x + -1) = 0
(2 + 4i + x)(x + (2 * -1 + 4i * -1))(x + -1) = 0
(2 + 4i + x)(x + (-2 + -4i))(x + -1) = 0

Reorder the terms:
(2 + 4i + x)(-2 + -4i + x)(x + -1) = 0

Reorder the terms:
(2 + 4i + x)(-2 + -4i + x)(-1 + x) = 0

Multiply (2 + 4i + x) * (-2 + -4i + x)
(2(-2 + -4i + x) + 4i * (-2 + -4i + x) + x(-2 + -4i + x))(-1 + x) = 0
((-2 * 2 + -4i * 2 + x * 2) + 4i * (-2 + -4i + x) + x(-2 + -4i + x))(-1 + x) = 0
((-4 + -8i + 2x) + 4i * (-2 + -4i + x) + x(-2 + -4i + x))(-1 + x) = 0
(-4 + -8i + 2x + (-2 * 4i + -4i * 4i + x * 4i) + x(-2 + -4i + x))(-1 + x) = 0

Reorder the terms:
(-4 + -8i + 2x + (-8i + 4ix + -16i2) + x(-2 + -4i + x))(-1 + x) = 0
(-4 + -8i + 2x + (-8i + 4ix + -16i2) + x(-2 + -4i + x))(-1 + x) = 0
(-4 + -8i + 2x + -8i + 4ix + -16i2 + (-2 * x + -4i * x + x * x))(-1 + x) = 0

Reorder the terms:
(-4 + -8i + 2x + -8i + 4ix + -16i2 + (-4ix + -2x + x2))(-1 + x) = 0
(-4 + -8i + 2x + -8i + 4ix + -16i2 + (-4ix + -2x + x2))(-1 + x) = 0

Reorder the terms:
(-4 + -8i + -8i + 4ix + -4ix + -16i2 + 2x + -2x + x2)(-1 + x) = 0

Combine like terms: -8i + -8i = -16i
(-4 + -16i + 4ix + -4ix + -16i2 + 2x + -2x + x2)(-1 + x) = 0

Combine like terms: 4ix + -4ix = 0
(-4 + -16i + 0 + -16i2 + 2x + -2x + x2)(-1 + x) = 0
(-4 + -16i + -16i2 + 2x + -2x + x2)(-1 + x) = 0

Combine like terms: 2x + -2x = 0
(-4 + -16i + -16i2 + 0 + x2)(-1 + x) = 0
(-4 + -16i + -16i2 + x2)(-1 + x) = 0

Multiply (-4 + -16i + -16i2 + x2) * (-1 + x)
(-4(-1 + x) + -16i * (-1 + x) + -16i2 * (-1 + x) + x2(-1 + x)) = 0
((-1 * -4 + x * -4) + -16i * (-1 + x) + -16i2 * (-1 + x) + x2(-1 + x)) = 0
((4 + -4x) + -16i * (-1 + x) + -16i2 * (-1 + x) + x2(-1 + x)) = 0
(4 + -4x + (-1 * -16i + x * -16i) + -16i2 * (-1 + x) + x2(-1 + x)) = 0
(4 + -4x + (16i + -16ix) + -16i2 * (-1 + x) + x2(-1 + x)) = 0
(4 + -4x + 16i + -16ix + (-1 * -16i2 + x * -16i2) + x2(-1 + x)) = 0
(4 + -4x + 16i + -16ix + (16i2 + -16i2x) + x2(-1 + x)) = 0
(4 + -4x + 16i + -16ix + 16i2 + -16i2x + (-1 * x2 + x * x2)) = 0
(4 + -4x + 16i + -16ix + 16i2 + -16i2x + (-1x2 + x3)) = 0

Reorder the terms:
(4 + 16i + -16ix + 16i2 + -16i2x + -4x + -1x2 + x3) = 0
(4 + 16i + -16ix + 16i2 + -16i2x + -4x + -1x2 + x3) = 0

Solving
4 + 16i + -16ix + 16i2 + -16i2x + -4x + -1x2 + x3 = 0

Solving for variable 'i'.

The solution to this equation could not be determined.

See similar equations:

| -57=-2+3r | | 6h-3=-6h+14 | | -8(8+x)+(x+8)=0 | | 18x-1=99-21-28x | | 32+4y-y^2= | | 3x+3=77 | | 15=-3c(c-1)+9 | | 2x-27+89=180 | | 2x-27+89=180 | | 3(k-2)-2k=6-4(k+7) | | 17=-13-x | | (1/5)x=8 | | Y=4x^3-21x^2+4x+15 | | -10x+7=7x-10 | | 5r^2+15r-200=0 | | 4t+9p+5=0 | | (V+2)(v-5)= | | X^2-40= | | 5(k-2)-6k=10-2(k+4) | | 5(k-2)-7k=10-2(k+4) | | 3x^2+8=83 | | 2x^41-13x^40-41x^3+6x+7=0 | | -7-2(t-4)= | | f(x)=50(x)+160 | | -30=6-9x | | 7x+9y=24 | | 81-2x=97-3x | | -12=6+2/3x | | -4y+8=4(2y-2)(-16+8y) | | 21x^2-4x-40=0 | | r^2-4rg-21g^2= | | -10-2c=12 |

Equations solver categories