(x*x)+16x+60=180

Simple and best practice solution for (x*x)+16x+60=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x*x)+16x+60=180 equation:



(x*x)+16x+60=180
We move all terms to the left:
(x*x)+16x+60-(180)=0
We add all the numbers together, and all the variables
(+x*x)+16x+60-180=0
We add all the numbers together, and all the variables
16x+(+x*x)-120=0
We get rid of parentheses
16x+x*x-120=0
Wy multiply elements
x^2+16x-120=0
a = 1; b = 16; c = -120;
Δ = b2-4ac
Δ = 162-4·1·(-120)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{46}}{2*1}=\frac{-16-4\sqrt{46}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{46}}{2*1}=\frac{-16+4\sqrt{46}}{2} $

See similar equations:

| -(8-10x)+3x-12=3(2x+5)+2x | | 90=x-55 | | 32=4a-9 | | 12p+2=145 | | 4+x-16=6 | | 4c−29=43 | | (x-2)^2=78 | | -6x+(-3)=-27 | | 12/(n-8)=6 | | x+1/2/7=7 | | 2(2.5d-9)+6d=-7 | | -4=-2t+2 | | 3.953+8.95b=47.65 | | 10=f/2+6 | | -6x+(-3)=-27 | | p+9p=90 | | 5+10y-4y=0 | | Y=15+b | | 9n+–13n−–20n−–8n+6n=12 | | 12i+6i=216 | | (9x+79)=(23x-5) | | (x+10)+32+x=180 | | 5Y+4x=30 | | x+11=32 | | 5x+34=-2(x-7x) | | |4n-5|=7 | | 3+8x=-109 | | 4x+14=10x+12 | | (2y+8)=(3y-13) | | 20c-10c=10 | | X-3=2x+6x= | | 17n-23n+11.5n=44* |

Equations solver categories