(x*x)+(x*x)=676

Simple and best practice solution for (x*x)+(x*x)=676 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x*x)+(x*x)=676 equation:



(x*x)+(x*x)=676
We move all terms to the left:
(x*x)+(x*x)-(676)=0
We add all the numbers together, and all the variables
(+x*x)+(+x*x)-676=0
We get rid of parentheses
x*x+x*x-676=0
Wy multiply elements
x^2+x^2-676=0
We add all the numbers together, and all the variables
2x^2-676=0
a = 2; b = 0; c = -676;
Δ = b2-4ac
Δ = 02-4·2·(-676)
Δ = 5408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5408}=\sqrt{2704*2}=\sqrt{2704}*\sqrt{2}=52\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-52\sqrt{2}}{2*2}=\frac{0-52\sqrt{2}}{4} =-\frac{52\sqrt{2}}{4} =-13\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+52\sqrt{2}}{2*2}=\frac{0+52\sqrt{2}}{4} =\frac{52\sqrt{2}}{4} =13\sqrt{2} $

See similar equations:

| X-7=-2x+23 | | 9(x-3)=8=7x+11 | | 9x–4=2(x+3) | | 3xX4x=588 | | X-7=2x+23 | | 8x+2x+5=95 | | 14=y/4+11 | | 4-9x=3x-11 | | 7x+9+24=90 | | -x-4=6x-53 | | 3x-7=2x+23 | | -14/15x=17/21 | | 4-6q=-5q | | 3a+23=-7-2a | | X-6+3x=90 | | (5x-5)+(3x+13)=90 | | 18=(x*x) | | 2x+x+6=25 | | 75=3(-8n-5) | | 10x=2225 | | w+5=97 | | 7=s+16/9 | | 3a+23=−7−2a | | 2(x*x)=900 | | 33x-12=360 | | (4x^2+56x)=20 | | 6x-7=4x-1=180 | | 5x-3=2x+39 | | 2(x*x)=196 | | 13=4s+5 | | 8(x+4)=12x−6 | | 9x+6=2x+5 |

Equations solver categories