(x*x)+(x*x)=64

Simple and best practice solution for (x*x)+(x*x)=64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x*x)+(x*x)=64 equation:



(x*x)+(x*x)=64
We move all terms to the left:
(x*x)+(x*x)-(64)=0
We add all the numbers together, and all the variables
(+x*x)+(+x*x)-64=0
We get rid of parentheses
x*x+x*x-64=0
Wy multiply elements
x^2+x^2-64=0
We add all the numbers together, and all the variables
2x^2-64=0
a = 2; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·2·(-64)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*2}=\frac{0-16\sqrt{2}}{4} =-\frac{16\sqrt{2}}{4} =-4\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*2}=\frac{0+16\sqrt{2}}{4} =\frac{16\sqrt{2}}{4} =4\sqrt{2} $

See similar equations:

| 7x^2−14x+5=x^2 | | x-36=43 | | -2x+5x-10=2​ | | 1/2•-2+1=y | | 5/8x=14 | | (x*x)+(x*x)=196 | | -9+4u=3+8u | | n=-2+1/2 | | 8(v+44)=-72 | | -5z-9z-17z=13 | | 12+x=3+1.5x | | 9m+11=90 | | 2(x+10=40 | | -8s+10=-10+7s+5 | | h+h+h=h+6 | | 10+4q=-38 | | 38-6s=48 | | 66=14+2j | | 10+20x=25+15x | | 17y+3y-16y-y=9 | | 2x-13=1+2x | | t/5+-89=-81 | | 7(2x+3)-20=14x+1 | | 2t+2t-68=180 | | 2x+2-2=7-2 | | 5⋅√x=48−8 | | 3k/2+k-5/7=4 | | 21=6d-15 | | 35/6x+8/3=12 | | -(7x+2)-7=-6x-(x+9) | | 5+12x+14x=80 | | 4d=9+7d |

Equations solver categories