If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)=(x-5)(2x+1)
We move all terms to the left:
(x)-((x-5)(2x+1))=0
We multiply parentheses ..
-((+2x^2+x-10x-5))+x=0
We calculate terms in parentheses: -((+2x^2+x-10x-5)), so:We add all the numbers together, and all the variables
(+2x^2+x-10x-5)
We get rid of parentheses
2x^2+x-10x-5
We add all the numbers together, and all the variables
2x^2-9x-5
Back to the equation:
-(2x^2-9x-5)
x-(2x^2-9x-5)=0
We get rid of parentheses
-2x^2+x+9x+5=0
We add all the numbers together, and all the variables
-2x^2+10x+5=0
a = -2; b = 10; c = +5;
Δ = b2-4ac
Δ = 102-4·(-2)·5
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{35}}{2*-2}=\frac{-10-2\sqrt{35}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{35}}{2*-2}=\frac{-10+2\sqrt{35}}{-4} $
| 12+x+21+x+11=29+x | | 1=1/4(4x+4) | | 6-^2+8x=5+4x | | f(-8)=-2(-8+5)^2+4 | | 9p=-2p-11 | | 3(8–y)=27 | | 2(p+7)=7(2+p) | | 2(p+7)=7(2+p | | (5x-3)=(8x-5) | | 9y−2+y=5y+10 | | 5(y+3)=2y+51 | | 7+8=-5w+3w+7w | | -3x+1=3x | | 9m-4=-4+2m+7m | | 9x+800=1088 | | 9x+800=288 | | 2x+35+7=3x+123, | | -3(x-6)=6(3+8x) | | 2(a-6)+5a+8=-(4-7a) | | -p/9=3/5 | | 6(x-5)-3=2(4+3x) | | -36z=4 | | 3x-5+x+25=140 | | -2(x+3)+12=-(2x-1)+5 | | 6(x-1)-3=2(4+3x) | | 6z-6.9=5z-8.6 | | 6h+7-2h=6h+7-2h | | 5s-4/3=4s+5/3 | | x-8=-5-8x+8x | | 4p+9=3p-2 | | -13+8r=5r-8+8r | | 13x-2x=42 |