If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)=(2x-1)(4x+7)-12x(-x-1)
We move all terms to the left:
(x)-((2x-1)(4x+7)-12x(-x-1))=0
We add all the numbers together, and all the variables
x-((2x-1)(4x+7)-12x(-1x-1))=0
We multiply parentheses ..
-((+8x^2+14x-4x-7)-12x(-1x-1))+x=0
We calculate terms in parentheses: -((+8x^2+14x-4x-7)-12x(-1x-1)), so:We add all the numbers together, and all the variables
(+8x^2+14x-4x-7)-12x(-1x-1)
We multiply parentheses
(+8x^2+14x-4x-7)+12x^2+12x
We get rid of parentheses
8x^2+12x^2+14x-4x+12x-7
We add all the numbers together, and all the variables
20x^2+22x-7
Back to the equation:
-(20x^2+22x-7)
x-(20x^2+22x-7)=0
We get rid of parentheses
-20x^2+x-22x+7=0
We add all the numbers together, and all the variables
-20x^2-21x+7=0
a = -20; b = -21; c = +7;
Δ = b2-4ac
Δ = -212-4·(-20)·7
Δ = 1001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-\sqrt{1001}}{2*-20}=\frac{21-\sqrt{1001}}{-40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+\sqrt{1001}}{2*-20}=\frac{21+\sqrt{1001}}{-40} $
| -8m=4-8m | | 2/3x+7=21 | | -13=-x/2-9 | | v-28=12 | | 10+4x=16+21x | | 6x-9+3x=6-3x+6 | | 2y+4y=9(6) | | -8m=4–8m | | 8x+13-5x-8=20 | | 1/5x-4=6 | | -4=y/3-9 | | 10x-14-x=-5 | | x-10=-2-x | | -1=g/3-3 | | 3t-2/4-2t+3/3=2/3t | | x3+x2+2x=0 | | 2x-5(x-3)=-2+3x-19 | | 3/5c-25=5+c | | 3×a/4=7 | | 3y=15y-18 | | 15-4x-32=7x-7x-33 | | 6=8-m/3 | | -3(-6)=y-22 | | 3b-1=25 | | (12+4y^2)^2=0 | | 6x+2=1.5x+47 | | 4x+93=-4x+22 | | 55-5t=0 | | 2=7x2-2 | | 12x+4=-10x+15 | | 3x+5=-2x+5 | | 8y+3y−1+3y−1=180 |