(x)+(1/2x)=180

Simple and best practice solution for (x)+(1/2x)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x)+(1/2x)=180 equation:



(x)+(1/2x)=180
We move all terms to the left:
(x)+(1/2x)-(180)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
x+(+1/2x)-180=0
We get rid of parentheses
x+1/2x-180=0
We multiply all the terms by the denominator
x*2x-180*2x+1=0
Wy multiply elements
2x^2-360x+1=0
a = 2; b = -360; c = +1;
Δ = b2-4ac
Δ = -3602-4·2·1
Δ = 129592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{129592}=\sqrt{4*32398}=\sqrt{4}*\sqrt{32398}=2\sqrt{32398}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-360)-2\sqrt{32398}}{2*2}=\frac{360-2\sqrt{32398}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-360)+2\sqrt{32398}}{2*2}=\frac{360+2\sqrt{32398}}{4} $

See similar equations:

| 7x-10=-2x=17 | | 6h−–5=95 | | -22=-2y+13 | | y/4-2=-14 | | (7y+13)/5=-10 | | 10x+19=10x+17 | | 4t^2-24t-3=0 | | (5x+5)+(4x-5)=180 | | I0x+19=10x+17 | | z.9z+2=38* | | (4x+22)+(6x+8)=150 | | (3(y-2))÷4=1* | | 4(y-2)=10 | | 1-2x+6=16 | | 11y-4=9y+50 | | 5x+23=103 | | 540=8x+1 | | 3x+4=-5(x-8) | | 5x+14=-51 | | m-5=-10. | | 4(X-1)+5(x-1)=6X+3-5X | | −8x−11+10x+21=−4 | | -28-42x= | | 20000=10000(1.03)t | | 5x-3=x+49 | | 2(x-5)-12=6 | | 4^x*5^(2-x)=7^(3-2x) | | 7-p=3p=5 | | 3x+82=10x+12x | | (x+20)+(70+x)=90 | | (x+20)+(70-x)=90 | | -6x+21=12x- |

Equations solver categories