(x)+((x2)-10)=425

Simple and best practice solution for (x)+((x2)-10)=425 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x)+((x2)-10)=425 equation:



(x)+((x2)-10)=425
We move all terms to the left:
(x)+((x2)-10)-(425)=0
We add all the numbers together, and all the variables
(+x^2-10)+x-425=0
We get rid of parentheses
x^2+x-10-425=0
We add all the numbers together, and all the variables
x^2+x-435=0
a = 1; b = 1; c = -435;
Δ = b2-4ac
Δ = 12-4·1·(-435)
Δ = 1741
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1741}}{2*1}=\frac{-1-\sqrt{1741}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1741}}{2*1}=\frac{-1+\sqrt{1741}}{2} $

See similar equations:

| x+(x2-10)=425 | | 6y-9=10y+23 | | 3x+16/4x+16=7/8 | | Y+3÷2=y-4÷3 | | 7x+6x=46 | | 5⋅(x+1)=25 | | 35-7p=1 | | 4k-7=15 | | (102/x)=180 | | 2^(3x)=1/8 | | x=(1/2)*x | | 5f+6=16 | | (1+0.8)n=3.44 | | 13b=-12b+100 | | n–4=47 | | x3-3=11 | | (102/x)=0.18 | | v+1=v | | 2x/25=6/(x/3) | | 4x^2-4×=3 | | 2(x+5)=-2(2x+3) | | 2x=72−6x | | 2x=25−3x | | 22+x=2-10 | | 9+x÷2=35 | | 7x-24=x-30 | | x+(x*0.1)=1250 | | 6x-15=x-25 | | 6y−7=4y+11 | | 6(-2z+5)=-2(3z+3) | | 5w-9=2w+21 | | Y=200+0.5Y-20r |

Equations solver categories