If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)(x+2)=840
We move all terms to the left:
(x)(x+2)-(840)=0
We multiply parentheses
x^2+2x-840=0
a = 1; b = 2; c = -840;
Δ = b2-4ac
Δ = 22-4·1·(-840)
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-58}{2*1}=\frac{-60}{2} =-30 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+58}{2*1}=\frac{56}{2} =28 $
| 4-m2=10 | | n^2+10n+22=0 | | 8x-x^2=65 | | s=19=49 | | -138=-6(6a-7) | | 54,200-b=17,234 | | -2z-10=-8z+6 | | 9(1+p)-10=2(7+5p) | | x4-4x2-x-x=0 | | r+7=4r+13 | | 9b+8=16 | | 26=7(g-9)+1226 | | 5*(a=4)=-15 | | -9×b+2=-11×b+16 | | 1726-b=345 | | -9b+2=-11b+7 | | -246=6(1-6n) | | 10(a/3)=6 | | -6(-1-4a)=-34+4a | | F(t)=2t^2+4 | | 3(2x+6)=4x | | -64=63+9x | | 3(2×x-1)=9 | | -x+13=21 | | 3×(2×x-1)=9 | | 6(x+2)-3=3x+3(3+x) | | 15^-3x=2 | | 6z+18=5-z | | -4(6-4x)=-152 | | 6(3x+1)=6-3x | | 7.5x1.9=14.25 | | -4(-1m+2)+2m=1/2 |