If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x)(x+1)=120
We move all terms to the left:
(x)(x+1)-(120)=0
We multiply parentheses
x^2+x-120=0
a = 1; b = 1; c = -120;
Δ = b2-4ac
Δ = 12-4·1·(-120)
Δ = 481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{481}}{2*1}=\frac{-1-\sqrt{481}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{481}}{2*1}=\frac{-1+\sqrt{481}}{2} $
| (5x-1)=(11x+21) | | 0.5x+24.65=27.5 | | 11c-9=3c+6+5c | | 3x+3=4x-10 | | 32+v=5v | | 11=23-2v | | 6+7n=2(n+3) | | 18/1-3^2x+1=3^2-x | | 57=3(k+3) | | x+14=55 | | 2k+10=-30 | | 7n+5n+5=-7 | | -1=p+4-6p | | 2m+6m=16 | | 9/5*c=14 | | -34m-4m=-18 | | 2q+10=71 | | (y+8)(y+6)=0 | | (6x-7)+(2x+8)=65° | | 3r+18=6r+6 | | 8=-6m+4m | | -1/6x(x-3)=-39 | | 9=w-3-7 | | -16x^2=48x+25 | | 6(8x+4)+9x−5=57x+28 | | 9.00=3+1.50(t-1) | | 3x÷4=-27 | | 4/3-2y=-1 | | -5(2x-7)=-10x-35 | | −2⋅p=p | | -5r/2-6=19 | | -3x^2+8-6=0 |